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FROM ABEL CONTINUITY THEOREM TO
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Abstract In this note we reveal that the missing link among a few crucial
results in analysis, Abel continuity theorem, convergence theorem on (gener-
alized) Dirichlet series, Paley-Wiener theorem is the Laplace transform with
Stieltjes integration. By this discovery, the reason why the domains of Stoltz
path and of convergence look similar is made clear. Also as a natural in-
trinsic property of Stieltjes integral, the use of partial summation in existing
proofs is elucidated. Secondly, we shall reveal that a basic part of the proof of
Paley-Wiener theorem is a version of the Laplace transform.
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1. Introduction

Let {λn} ⊂ R be an increasing sequence for which we may suppose λ1 > 0. For a
sequence {an} ⊂ C, the series

f(s) =

∞∑
n=1

ane
−λns (1.1)

convergent in some half-plane, is called a generalized Dirichlet series.
1. If λn = log n with log denoting the principal value, f(s) =

∑∞
n=1

an

ns is (an
ordinary) Dirichlet series.
2. If λn = n and e−s = w, f(w) = f(− logw) =

∑∞
n=1 anw

n is the power series.

In all literature [2], [8], [9], etc. the convergence theorem for generalized Dirichlet
series, Theorem 1.1 and the Abel continuity theorem, Corollary 1.1 are regarded
as independent and proofs are given separately. Cf. also [10] (cf. [4]). In [5] it
is shown that Theorem 1.1 entails Corollary 1.1 via a counterpart, Corollary 1.2
together with conformality of the analytic mapping e−s = w, thus revealing the
reason why the convergence domains are angular domains of a similar shape. The
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proof uses a general form of the partial summation [5, Lemma 2] for a generalized
sequence {λn}, thus unifying all existing proofs.

In this note we employ a general treatment by (Lebesgue-) Stieltjes integrals
to attain two objects at a stretch. I.e. we follow [13] to introduce Corollary 1.3
whose discrete version leads to Theorem 1.1. In the proof, integration by parts is
used which is a more general version of the partial summation. Then on one hand
we cover Abel continuity theorem by the convergence theorem, Corollary 1.3, for
Laplace transforms and conformality, revealing the reason why convergence domains
being similar.

On the other hand, we shall show that the basic part of the Paley-Wiener the-
orem (cf. e.g. [3]) is laid by the Laplace transform method. Then we appeal to
two fundamental results, the Plancherel formula and the Fourier inversion formula
to conclude the theorem. By finding this hidden link of Laplace transform, we are
able to treat these two remote-looking objects of Paley-Wiener theorem and Abel
continuity theorem in a unified way, up to some auxiliary fundamental results. The
Paley-Wiener theorem has recently been highlighted in view of its essential applica-
tion to signal restoration. In both well-known approaches by sampling [13], [6], [11]
and by Bernstein polynomials [1] the Paley-Wiener theorem plays a fundamental
role.

Theorem 1.1. If the series (1.1) is convergent for s = s0 = σ0 + it0, then f(s) is
uniformly convergent in the right half-plane σ > σ0 in the wide sense and represents
an analytic function there. More precisely, let D be an angular domain

σ − σ0 ≥ 0, arg(s− s0) ≤ δ (1.2)

with 0 < δ < π
2 . Then f(s) is uniformly convergent on D in the wide sense.

Corollary 1.1. (Abel continuity theorem) Suppose a power series f(z) =
∑∞

n=1 anz
n

converges at the point z0 on its circle of convergence. Draw two chords (inside the
circle) that start from z0 and form an angle δ with the tangent at z0 of the circle
(0 < δ < π

2 ). Let ∆ be the (closure of) intersection of this angular subdomain
and the disc of convergence. Then f(z) approaches f(s0) as z → z0 in the angular
domain inside ∆. This is often said as z approaches to z0 along Stoltz path.

Corollary 1.2. (Counterpart of Abel continuity theorem) f(s) approaches to f(s0)
as s → s0 in the angular domain (1.2).

Lemma 1.1.

(i) The Stieltjes integral
∫ b

a
f dg exists if f is continuous and g is of bounded vari-

ation and linear in f and g. The role can be changed in view of Item (ii). It holds
that ∫ b

a

dg(x) = g(b)− g(a). (1.3)

(ii) The formula for integration by parts holds true:∫ b

a

f(x) dg(x) = [f(x)g(x)]ba −
∫ b

a

g(x) df(x), (1.4)
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provided that f is continuous and g is of bounded variation or g is continuous and
f is of bounded variation.

(iii) If g is a step function with jumps an at xn, the Stieltjes integral reduces to the
sum: ∫ b

a

f(x) dg(x) =
∑

a<xn≤b

f(xn)an. (1.5)

(iv) If f(x) is continuous, φ(x) ∈ L = L1 on [a, b] and

g(x) =

∫ x

c

φ(u)du x, c ∈ [a, b],

then ∫ b

a

f(x)dg(x) =

∫ b

a

f(x)φ(x)dx =

∫ b

a

f(x)g′(x)dx, (1.6)

where the last integral exists as a Lebesgue integral.

Lemma 1.2. Let

f(s) =

∫ ∞

0

e−sxdg(x) (1.7)

and

h(u) =

∫ u

0

e−s0xdg(x) u ≥ 0. (1.8)

If

lim sup
0≤u

|h(u)| = M < ∞ (1.9)

with s0 = σ0 + it0, then (1.7) is convergent at s0 and∫ ∞

0

e−sxdg(x) = (s− s0)

∫ ∞

0

e−(s−s0)xdh(x) (1.10)

the integral on the right being absolutely convergent.

Proof. By Lemma 1.1, we have successively for X < Y∫ Y

X

e−sxdg(x) =

∫ Y

X

e−(s−s0)xdh(x) (1.11)

=
[
e−(s−s0)xh(x)

]Y
X
+ (s− s0)

∫ Y

X

e−(s−s0)xh(x)dx.

For X = 0, Y → ∞, the above tends to → (s − s0)
∫∞
0

e−(s−s0)xh(x)dx where the
passage to the limit follows from∣∣∣∣(s− s0)

∫ ∞

0

e−(s−s0)xh(x)d

∣∣∣∣ ≤ M |s− s0|
∫ ∞

0

e−(σ−σ0)xdx ≤ M
|s− s0|
σ − σ0

(1.12)

for σ > σ0. The convergence is absolute (and uniform).
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Remark 1.1. From Lemma 1.2 it follows that the domain of convergence is a half-
plane. For our purpose we need a stronger results that follow. In most of existing
literature on (generalized) Dirichlet series, the above proof is used with integration
by parts (1.11) as partial summation.

Theorem 1.2. [12, Theorem 4.3, p. 54] If the integral (1.7) is convergent at s = s0
and H > 0,K > 1 are constants, then the integral is uniformly convergent in the
domain

D : |s− s0| ≤ K(σ − σ0)e
H(σ−σ0), σ ≥ σ0. (1.13)

In the proof, (1.11) with Y = ∞ is essentially used.

Corollary 1.3. If the integral

f(s) =

∫ ∞

0

e−sxdg(x) (1.14)

is convergent at s = s0 = σ0 + it0 and K = 1
cos δ > 1 where δ has the same meaning

in Theorem 1.1, then the integral is uniformly convergent in the angular domain

Ds0 : |s− s0| ≤ K(σ − σ0), σ ≥ σ0. (1.15)

Suppose f(z) is an integral function satisfying the conditions

|f(z)| ≤ CeA|z|, 0 < A (1.16)

and
f(x) = o(1) as z = x → +∞. (1.17)

For α ∈ R let Γα(r) denote a ray starting from the origin

Γα = Γα(r) : z = reiα, 0 ≤ r < ∞. (1.18)

Let
Pα = {s|Re(seα) > A}, (1.19)

so that Pα is the rotated right half-plane obtained from the right half-plane
{s|Re s > A} by rotation −α in the positive direction. Let Φα(w) be defined by

Φα(s) = Φα(f, s) =

∫
Γα

e−szf(z) dz, s ∈ Pα. (1.20)

In view of (1.18) and (1.19) the WeierstrassM -test applies and therefore the integral
(1.20) converges absolutely and represents an analytic function in Pα for every
α ∈ R. Φ0 is the Laplace transform

Φ0(f, s) = L[f ](s) =
∫ ∞

0

e−sxf(x) dx, σ := Re s > a. (1.21)

The integral (1.21) is convergent at s = 0 in view of (1.17). Hence Corollary 1.3
applies and is is analytic in the angular domain (1.15).

Lemma 1.3. Suppose 0 < β − α < π. Then in the intersection Pα ∩ Pβ, we have

Φα(f, s) = Φβ(f, s). (1.22)
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Proof. We modify the proof in [7, p.376]. It suffices to prove this in the case α
and 0 (α > 0, say,) by rotating the configuration by −α and writing α for β − α.
If we prove this case, then we also prove that Φα(e) is an integral expression of the
Laplace transform. Let

sα/2 = |s|e−α
2 i (1.23)

be a ray. Then

Re(seα) = Re(s) = |s| cos α
2
.

Hence if

|s| > A

cos α
2

, (1.24)

then sα/2 ∈ Pα ∩ Pβ . Hence on the circular arc CR : z = Reiθ, 0 ≤ θ ≤ α, we have

|f(z)e−sα/2z | = O (exp (AR) exp(−r cos(θ − α/2))) (1.25)

= O (exp (A− |s| cos(α/2))R) → 0, R → ∞

as long as (1.24). The Cauchy integral theorem applied to the sector with boundaries
[0, R], CR and z = reiα, r : R → 0 shows that the sum of integrals along the rays
and the integral along the arc is 0. By (1.25), Φα = Φ0 on the ray (1.23) with
(1.24). But then by the consistency theorem, they must coincide in Pα ∩ P0.

Theorem 1.3. Every Φα(f, s) in (1.20) is an integral representation of the Laplace
transform (1.21) for all α ∈ R.

Indeed, for |α| ≤ π
2 , theorem reduces to Corollary 1.3 and Lemma 1.3. And Φα

coincides with Φ0 in the angular domain Ds0 in (1.15) and in Pα\Ds0 , Φα gives an
analytic continuation.

For π
2 < |α| ≤ π, every Φα(f, s) is an analytic continuation of Φ(f, s). This also

follows from the Schwarz reflection principle with respect to the imaginary axis.

2. Paley-Wiener theorem

In this section we elucidate the proof of the Paley-Wiener theorem given in Rudin [7].
There are some books and papers related to this theorem (cf. e.g. [3, pp.38-40]).

Let

f(z) =
1√
2π

∫ A

−A

F (ω)eiωz dω, (2.1)

where A > 0 and F ∈ L2(−A,A). One can show that f is an integral function. It
satisfies the growth condition

|f(z)| ≤ 1√
2π

∫ A

−A

|F (ω)|e−ωy dω ≤ 1√
2π

eA|y|
∫ A

−A

|F (ω)|dω, (2.2)

where we write z = x+ iy. Hence denoting the last integral by C, we deduce (1.16).

Definition 2.1. An integral function f that satisfies condition (1.16) is said to be
of exponential type (or of order 1 à la Hadamard).

Thus we have
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Proposition 2.1. Every f of the form (2.1) is an integral function which satisfies
(1.16) and whose restriction is in L2 (by the Plancherel theorem).

The remarkable theorem of Paley-Wiener asserts that the converse also holds.

Theorem 2.1. (Paley-Wiener theorem) Suppose A and C are positive constants,
that f is an integral function of exponential type, i.e. satisfying (1.16) for all
values of z, and the boundary condition∫ ∞

−∞
|f(x)|2 dx < ∞. (2.3)

Then there exists a boundary function F ∈ L2(−∞,∞) such that

f(z) =
1√
2π

∫ A

−A

F (ω)eiωz dω (2.4)

for all values of z.

Proof. With enough preparation given toward the end of the previous section,
the proof now goes along lines of proof in Rudin. Condition (1.17) is assured by
(2.3). The key lies in the proof of

lim
δ→0

∫ ∞

−∞
fδ(x)e

−itx dx = 0, t ∈ R, |t| > A, (2.5)

where
fδ(t) = f(x)e−δ|x|. (2.6)

Since fδ → f in L2-norm, the Plancherel theorem implies that the Fourier trans-
forms of fδ tends to f̂ in L2-norm. (2.5) shows f̂ vanishes in |t| > A and the Fourier
inversion formula entials (2.4) for a.a. values. But then both sides being analytic,
hence for all values.

Proof of (2.5) follows from Lemma 1.3. For first note that∫ ∞

−∞
fδ(x)e

−itx dx = Φ0(fδ)− Φπ(f−δ). (2.7)

Then rewrite this as∫ ∞

−∞
fδ(x)e

−itx dx =

{
Φ−π

2
(fδ)− Φ−π

2
(f−δ) t > A

Φπ
2
(fδ)− Φπ

2
(f−δ) t < −A

(2.8)

Then (2.5) immediately follows, completing the proof.

Conclusion. By applying the Laplace transform with Stieltjes integratioo, we have
established the following theorem.

Theorem 2.2. Both the Abel continuity theorem (Corollary 1.1) and the Paley-
Wiener theorem (Theorem 2.1) are based on similar grounds and may be treated
in a unified way up to some auxiliary fundamental results, where in the former we
use the discrete form as partial summation and in the latter, a generalized Laplace
transform along a ray.
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