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1. Introduction

Since the final years of the 17th century, the notion of fractional calculus, which is a
generalization of conventional differentiation and integration to any order, including
non-integer orders, has had a long history. In a letter to L’Hospital, Leibniz revealed
his interest in this matter almost as soon as the concepts of classical calculus were
understood in 1695 when Newton and Leibniz built the foundations of differential
and integral calculus. He proposed to generalize the notation d1/2h which means
the derivative of function h with order 1/2 and a formula for the n-th derivative
of the product of two functions for n > 0 [1]. Then, many researchers devote
themselves to this field, we mention Euler in 1730. Liouville in 1847, so that was
the first one he proposed a definition of the fractional integral from a generalization
of Taylor’s formula [2]. Subsequently, several definitions of fractional integrals and
derivatives appeared and were developed. We find among them Rieman-Liouville
[3] , Caputo [4, 5], Hadamard [6, 7], Caputo-Fabrizio [8], and Atangana-Baleanu
derivatives [9]. Despite their multiplicity, it cannot be said that one is better than
the other. Rather, each of them has its characteristics, and each one complements
the other. They also generalize it to include various aspects and all of them have
proven to be distinctive tools for integrating and modeling many phenomena.

Applications of fractional differential equations using these multiple types of
derivatives have increased in the past few decades after some small developments.
It has produced better results in different field like engineering, biology, and epi-
demiology [10,11]. For example, in [12] the authors analyze the impact of diabetes
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and resistant strains in a model for TB infection. Agarwal et al. also apply the
Caputo fractional derivative in a variety of sciences, for more details, see [13–15].
Whereas in [16], other authors give the numerical solution of some fractional dy-
namical systems in medicine involving the Caputo and AB derivatives. Moreover,
they showed that the integer order is less accurate than the fractional order.

In this paper, we enlarge the result obtained in [17] by studying the existence
and uniqueness of solution for the following Atangana-Baleanu nonlinear fractional
equation 

ABCDδz(t) = g(t, z(t)), t ∈ [0, 1],

ABCDδ−1z(1) = 0; ABCDδ−2z(1) = 0; z(0) = 0.

(1.1)

where ABCDδ is Atangana-Baleanu derivative in the sens of Caputo with the order
δ ∈ (2, 3] and g : [0, 1]× R → R is a function given.
The main advantage of this research is that it is not limited to studying the existence
and uniqueness of solutions to nonlinear equations, but rather the application of
the Atangana-Baleanu derivative to boundary conditions as an extension of it to
the calculus fractional field and not only to the equation, which makes the area of
fractional calculus rich in different derivative notions. Its application in contrast to
previous works that were limited to other derivatives.
This work is divided into four Sections. The second is about the preliminaries,
in this Section, we recall the necessary and some basic notion needed for fractional
calculus, such as the gamma function, Betta, and Mittag-Leffler with one parameter,
and with two parameters. It also include definitions and derivative properties of
Atangana-Baleanu. In the third Section, we present our main results concerning
the existence and uniqueness of solutions to fractional boundary value problems.
We also provide an example to demonstrate our point in Section 4.

2. Preliminaries

In this part, we recall some necessary functions of fractional calculus. The essential
definitions and characteristics of the fractional derivative proposed by Atangana
and Baleanu [9,18] are presented in this section, which will be used throughout the
rest of this paper.

Definition 2.1. [21] It is well known that the classical Euler gamma function can
be defined for x > 0 by

Γ(x) =

∫ ∞

0

tx−1e−t dt.

Definition 2.2. [20] It is reasonable to assume that the Betta function can also
be extended in a meaningful way. It is represented by an integral.

B(s, t) =

∫ 1

0

xs−1(1− x)t−1 dx, Re(s) > 0, Re(t) > 0.
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Has a close relationship to gamma function

B(s, t) = B(t, s) =
Γ(s)Γ(t)

Γ(s+ t)
.

Definition 2.3. [11] the symbol for the fundamental Mittag-Leffler function is
Eδ(z) and it is defined as

Eδ(z) =

∞∑
k=0

zk

Γ(1 + δk)
, Re(δ) > 0.

One generalization of Eδ(z) is denoted and defined as follows

Eδ,β(z) =

∞∑
k=0

zk

Γ(δk + β)
, Re(δ) > 0, Re(β) > 0,

which is a 2-parameter generalization of Eδ(z).

Definition 2.4. [9] Let g ∈ H1(a, b), b > a, δ ∈ [0, 1] then, the definition of
Atangana– Baleanu derivative in Caputo type is given by:

ABCDδ
t

(
g(t)

)
=

M(δ)

1− δ

∫ t

a

g′(x)Eδ

[
−δ

(t− x)δ

1− δ

]
dx,

where M(δ) denotes a normalization function obeying M(0) = M(1) = 1.

Definition 2.5. [9] Let g ∈ H1(a, b), a < b, δ ∈ [0, 1], the Atangana-Baleanu
derivative in Riemann-Liouville type is given by:

ABR
a Dδ

t

[
g(t)

]
=

M(δ)

1− δ

d

dt

∫ t

a

g(x)Eδ

[
−δ

(t− x)δ

1− δ

]
dx.

Definition 2.6. The fractional integral related to the Atangana-Baleanu fractional
derivative is defined by [9]:

AB
a Iδt

[
g(t)

]
=

1− δ

M(δ)
g(t) +

δ

M(δ)Γ(δ)

∫ t

a

g(s)(t− s)δ−1ds.

Lemma 2.1. [18] For 0 < δ < 1, we have

ABIδa

(
ABCDδ

ag(x)

)
= g(x)− g(a),

and
ABIδb

(
ABCDδ

bg(x)

)
= g(x)− g(b).

Lemma 2.2. [22] Let n < δ ≤ n + 1. Then ABCDδg(t) = 0, if g(t) is constant
function.

Definition 2.7. [22] Let n < δ ≤ n+1 and g be function such that g(n) ∈ H1(a, b).
Set β = δ − n. We define(

ABC
a Dδg

)
(t) =

(
ABC
a Dβg(n)

)
(t),
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and it takes on the following form in the left Riemann-Liouville interpretation.(
ABR
a Dδg

)
(t) =

(
ABR
a Dβg(n)

)
(t).

We have the associated fractional integral(
AB
a Iδg

)
(t) =

(
InABIβg

)
(t).

Proposition 2.1. [22] For u(t) defined on [a, b] and δ ∈ (n, n + 1], for some
n ∈ N0, we have:

�
ABRDδ

(
ABIδw(t)

)
= w(t).

�
AB
a Iδa

(
ABRDδw(t)

)
= w(t)−

∑n−1
k=0

w(k)(a)
k! (t− a)k.

�
AB
a Iδ

(
ABCDδ

aw(t)

)
= w(t)−

∑n
k=0

w(k)(a)
k! (t− a)k.

3. Main result

In this section we are going to prove the existence and uniqueness of solution to the
following boundary value problem

ABCDδz(t) = g(t, z(t)), t ∈ [0, 1],

ABCDδ−1z(1) = 0; ABCDδ−2z(1) = 0; z(0) = 0.

(3.1)

where δ ∈ (2, 3] and we note that I = [0, 1] with given the condition of uniqueness.
C(I,R) means the continuous functions space from I into R.
∥z∥∞ = supt∈[0,1] |z(t)|.

Theorem 3.1. Let 2 < δ ≤ 3 and let g : [0, 1] × R → R be a continuous function.
A function z is a solution of the initial value problem (3.1). If and only if z is a
solution to the following integral equation

z(t) = P1(t)

∫ 1

0

g(s, z(s))Eδ−2

(
2− δ

3− δ
(1− s)δ−2

)
ds

+ P2(t)

∫ 1

0

∫ s

0

(s− τ)δ−3g(τ, z(τ))Eδ−2

(
2− δ

3− δ
(1− s)δ−2

)
dτds

− P3(t)

∫ 1

0

∫ s

0

g(τ, z(τ))Eδ−2

(
2− δ

3− δ
(1− s)δ−2

)
dτds

− P4(t)

∫ 1

0

∫ s

0

(s− τ)δ−2g(τ, z(τ))Eδ−2

(
2− δ

3− δ
(1− s)δ−2

)
dτds

+
3− δ

M(δ − 2)

∫ t

0

∫ s

0

g(τ, z(τ))dτds+
δ − 2

Γ(δ)M(δ − 2)

∫ t

0

(t− s)δ−1g(s, z(s))ds.

(3.2)
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Proof. Let as consider the following boundary value problem

ABCDδz(t) = g(t, z(t)), t ∈ [0, 1] δ ∈ (2, 3],

ABCDδ−1z(1) = 0; ABCDδ−2z(1) = 0; z(0) = 0.

We apply the fractional integral of Atangana-Baleanu in both sides of equation, we
obtain

z(t) = z(0) + tz′(0) +
t2

2!
z′′(0) + ABIδ−2

(∫ t

0

∫ s

0

g(τ, z(τ))dτds

)
z(t) = z(0) + tz′(0) +

t2

2!
z′′(0) +

1− (δ − 2)

M(δ − 2)

(∫ t

0

∫ s

0

g(τ, z(τ))dτds

)
+

δ − 2

M(δ − 2)

(
RLI(δ−2)+2g(t, z(t))

)
z(t) = z(0) + tz′(0) +

t2

4
z′′(0) +

3− δ

M(δ − 2)

(∫ t

0

∫ s

0

g(τ, z(τ))dτds

)
+

δ − 2

M(δ − 2)

(
RLIδg(t, z(t))

)
We find the value of constants z′(0) and z′′(0) by using the boundary condition.
Or

ABCDδ−1z(1) =

(
ABCDδ−2z′(t)

)∣∣∣∣
t=1

We calculate first z′(t) then ABCDδ−2z′(t). So, we get

z′(t) = z′(0) +
2

4
tz′′(0) +

3− δ

M(δ − 2)

∫ t

0

g(s, z(s))ds+
δ − 2

M(δ − 2)
RLIδ−1g(t, z(t))

We apply the fractional derivative with order δ − 2 and using definition (2.7), we
obtain

ABCDδ−2z′(t) =
M(δ − 2)

2(3− δ)
z′′(0)tEδ−2,2

(
2− δ

3− δ
tδ−2

)
+

∫ t

0

g(s, z(s))Eδ−2

(
2− δ

3− δ
(t− s)δ−2

)
ds

+
δ − 2

(3− δ)Γ(δ − 2)

∫ t

0

∫ s

0

(s− τ)δ−3g(τ, z(τ))Eδ−2

(
2− δ

3− δ
(t− s)δ−2

)
ds.

Since we have ABCDδ−1z(1) = 0, then we get

ABCDδ−1z(1) =
M(δ − 2)

2(3− δ)
z′′(0)Eδ−2,2

(
2− δ

3− δ

)
+

∫ 1

0

g(s, z(s))Eδ−2

(
2− δ

3− δ
(1− s)δ−2

)
ds

+
δ − 2

(3− δ)Γ(δ − 2)

∫ 1

0

∫ s

0

(s− τ)δ−3g(τ, z(τ))Eδ−2

(
2− δ

3− δ
(1− s)δ−2

)
dτds = 0.
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By a simple calculation, we obtain the value of z′′(0), which is provided by

z′′(0) =
−2(3− δ)

M(δ − 2)Eδ−2,2

(
2−δ
3−δ

) ∫ 1

0

g(s, z(s))Eδ−2

(
2− δ

3− δ
(1− s)δ−2

)
ds

− 2(δ − 2)

M(δ − 2)Γ(δ − 2)

× 1

Eδ−2,2

(
2−δ
3−δ

) ∫ 1

0

∫ s

0

(s− τ)δ−3g(τ, z(τ))Eδ−2

(
2− δ

3− δ
(1− s)δ−2

)
dτds.

We have, also

ABCDδ−2z(t) =
M(δ − 2)

3− δ
z′(0)

∫ t

0

Eδ−2

(
2− δ

3− δ
(t− s)δ−2

)
ds

+
M(δ − 2)

2(3− δ)
z′′(0)

∫ t

0

sEδ−2

(
2− δ

3− δ
(t− s)δ−2

)
ds

+

∫ t

0

∫ s

0

g(s, z(s))Eδ−2

(
2− δ

3− δ
(t− s)δ−2

)
ds

+
δ − 2

(3− δ)Γ(δ − 1)

∫ t

0

∫ s

0

(s− τ)δ−2g(τ, z(τ))

× Eδ−2

(
2− δ

3− δ
(t− s)δ−2

)
dτds.

For t = 1, ABCDδ−2z(1) = 0 we obtain the value of z′(0), given by

z′(0) =
3− δ

M(δ − 2)

∫ 1

0

g(s, z(s))Eδ−2

(
2− δ

3− δ
(1− s)δ−2

)
ds

Eδ−2,3(
2−δ
3−δ )

Eδ−2,2(
2−δ
3−δ )

+
(δ − 2)Eδ−2,3(

2−δ
3−δ )

Γ(δ − 2)M(δ − 2)E2
δ−2,2(

2−δ
3−δ )

∫ 1

0

∫ s

0

(s− τ)δ−3g(τ, z(τ))Eδ−2

(
2− δ

3− δ
(1− s)δ−2

)
dτds

− 3− δ

M(δ − 2)Eδ−2,2

∫ 1

0

∫ s

0

g(τ, z(τ))Eδ−2

(
2− δ

3− δ
(1− s)δ−2

)
dτds

− δ − 2

Γ(δ − 1)M(δ − 2)Eδ−2,2(
2−δ
3−δ )

∫ 1

0

∫ s

0

(s− τ)δ−2g(τ, z(τ))Eδ−2

(
2− δ

3− δ
(1− s)δ−2

)
dτds.

Finally, we obtain the solution to equation (3.1), which is definable by

z(t) =

[
3− δ

M(δ − 2)

Eδ−2,3(
2−δ
3−δ )

E2
δ−2,2(

2−δ
3−δ )

t− (3− δ)t2

2M(δ − 2)Eδ−2,2()

] ∫ 1

0

g(s, z(s))Eδ−2

(
2− δ

3− δ
(1− s)δ−2

)
ds

+

[
(δ − 2)

M(δ − 2)Γ(δ − 2)

Eδ−2,3(
2−δ
3−δ )

E2
δ−2,2(

2−δ
3−δ )

t− (δ − 2)t2

2Γ(δ − 2)M(δ − 2)Eδ−2,2(
2−δ
3−δ )

] ∫ 1

0

∫ s

0

(s− τ)δ−3g(τ, z(τ))

× Eδ−2

(
2− δ

3− δ
(1− s)δ−2

)
dτds

− (3− δ)t

Eδ−2,2(
2−δ
3−δ )M(δ − 2)

∫ 1

0

∫ s

0

g(τ, z(τ))Eδ−2

(
2− δ

3− δ
(1− s)δ−2

)
dτds
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− (δ − 2)t

M(δ − 2)Eδ−2,2(
2−δ
3−δ )Γ(δ − 1)

∫ 1

0

∫ s

0

(s−τ)δ−2g(τ, z(τ))Eδ−2

(
2− δ

3− δ
(1−s)δ−2

)
dτds

+
3− δ

M(δ − 2)

∫ t

0

∫ s

0

g(τ, z(τ))dτds+
δ − 2

Γ(δ)M(δ − 2)

∫ t

0

(t− s)δ−1g(s, z(s))ds.

To simplify the solution formula, we used the following expression

P1(t) =
3− δ

M(δ − 2)

Eδ−2,3(
2−δ
3−δ )

E2
δ−2,2(

2−δ
3−δ )

t− (3− δ)t2

2M(δ − 2)Eδ−2,2()
,

P2(t) =
(δ − 2)

M(δ − 2)Γ(δ − 2)

Eδ−2,3(
2−δ
3−δ )

E2
δ−2,2(

2−δ
3−δ )

t− (δ − 2)t2

2Γ(δ − 2)M(δ − 2)Eδ−2,2(
2−δ
3−δ )

,

P3(t) =
(3− δ)t

Eδ−2,2(
2−δ
3−δ )M(δ − 2)

,

P4(t) =
(δ − 2)t

M(δ − 2)Γ(δ − 1)Eδ−2,2(
2−δ
3−δ )

.

Then the solution becomes

z(t) = P1(t)

∫ 1

0

g(s, z(s))Eδ−2

(
2− δ

3− δ
(1− s)δ−2

)
ds

+ P2(t)

∫ 1

0

∫ s

0

(s− τ)δ−3g(τ, z(τ))Eδ−2

(
2− δ

3− δ
(1− s)δ−2

)
dτds

− P3(t)

∫ 1

0

∫ s

0

g(τ, z(τ))Eδ−2

(
2− δ

3− δ
(1− s)δ−2

)
dτds

− P4(t)

∫ 1

0

∫ s

0

(s− τ)δ−2g(τ, z(τ))Eδ−2

(
2− δ

3− δ
(1− s)δ−2

)
dτds

+
3− δ

M(δ − 2)

∫ t

0

∫ s

0

g(τ, z(τ))dτds+
δ − 2

Γ(δ)M(δ − 2)

∫ t

0

(t− s)δ−1g(s, z(s))ds.

Suppose z satisfies the integral equation (3.2), and we proved that z verifies the
fractional boundary value problem (3.1)

We have

z′′(t) = − 3− δ

Eδ−2,2(
2−δ
3−δ )M(δ − 2)

∫ 1

0

g(s, z(s))Eδ−2

(
2− δ

3− δ
(1− s)δ−2

)
ds

− (δ − 2)

Γ(δ − 2)M(δ − 2)Eδ−2,2(
2−δ
3−δ )

∫ 1

0

∫ s

0

(s− τ)δ−3g(τ, z(τ))Eδ−2

(
2− δ

3− δ
(1− s)δ−2

)
dτds

+
3− δ

M(δ − 2)
g(t, z(t)) +

δ − 2

M(δ − 2)
RLIδ−2g(t, z(t)).

Then, we obtain

ABCDδ−2z′′(t) = ABCDδ−2

[
− 3− δ

Eδ−2,2(
2−δ
3−δ )M(δ − 2)

∫ 1

0

g(s, z(s))Eδ−2

(
2− δ

3− δ
(1−s)δ−2

)
ds

]

−ABCDδ−2

[
(δ − 2)

Γ(δ − 2)M(δ − 2)Eδ−2,2(
2−δ
3−δ )

∫ 1

0

∫ s

0

(s−τ)δ−3g(τ, z(τ))Eδ−2

(
2− δ

3− δ
(1−s)δ−2

)
dτds

]
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+ABCDδ−2

[
ABIδ−2g(t, z(t))

]

So by lemma 2.2, we get

ABCDδz(t) = g(t, z(t)).

Easily we verified that z(0) = 0, Moreover, with a simple calculus, we obtain
ABCDδ−2z(1) = 0 and ABCDδ−1z(1) = 0.

Theorem 3.2. Let g : I × R −→ R be a continuous function. Suppose that there
exists a constant k > 0, such that

|g (t, z(t))− g (t, x(t))| < k |z(t)− x(t)| ,∀z, x ∈ R,∀t ∈ I.

Then the problem (3.1) has a unique solution on I. If the following condition is
satisfied

8k

M(δ − 2)
< 1. (3.3)

Proof. The idea is to transform the problem (3.1) into a fixed point equation.
For that, we consider the operator T : C(I,R) −→ C(I,R) defined by

Tz(t) = P1(t)

∫ 1

0

g(s, z(s))Eδ−2

(
2− δ

3− δ
(1− s)δ−2

)
ds

+ P2(t)

∫ 1

0

∫ s

0

(s− τ)δ−3g(τ, z(τ))Eδ−2

(
2− δ

3− δ
(1− s)δ−2

)
dτds

− P3(t)

∫ 1

0

∫ s

0

g(τ, z(τ))Eδ−2

(
2− δ

3− δ
(1− s)δ−2

)
dτds

− P4(t)

∫ 1

0

∫ s

0

(s− τ)δ−2g(τ, z(τ))Eδ−2

(
2− δ

3− δ
(1− s)δ−2

)
dτds

+
3− δ

M(δ − 2)

∫ t

0

∫ s

0

g(τ, z(τ))dτds+
δ − 2

Γ(δ)M(δ − 2)

∫ t

0

(t− s)δ−1g(s, z(s))ds.
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Let z1, z2 ∈ C(I,R) and t ∈ I

|Tz2(t)− Tz1(t)| ≤ |P1(t)|
∫ 1

0

|g(s, z2(s))− g(s, z1(s))|Eδ−2

(
2− δ

3− δ
(1− s)δ−2

)
ds

+ |P2(t)|
∫ 1

0

∫ s

0

(s− τ)δ−3|g(τ, z2(τ))− g(τ, z1(τ))|Eδ−2

(
2− δ

3− δ
(1− s)δ−2

)
dτds

+ |P3(t)|
∫ 1

0

∫ s

0

|g(τ, z2(τ))− g(τ, z1(τ))|Eδ−2

(
2− δ

3− δ
(1− s)δ−2

)
dτds

+ |P4(t)|
∫ 1

0

∫ s

0

(s− τ)δ−2|g(τ, z2(τ))− g(τ, z1(τ))|Eδ−2

(
2− δ

3− δ
(1− s)δ−2

)
dτds

+
3− δ

M(δ − 2)

∫ t

0

∫ s

0

|g(τ, z2(τ))− g(τ, z1(τ))|dτds

+
δ − 2

Γ(δ)M(δ − 2)

∫ t

0

(t− s)δ−1|g(s, z2(s))− g(s, z1(s))|ds

≤ |P1(t)|k ∥z2 − z1∥∞
∫ 1

0

Eδ−2

(
2− δ

3− δ
(1− s)δ−2

)
ds

+ |P2(t)|k ∥z2 − z1∥∞
∫ 1

0

∫ s

0

(s− τ)δ−3Eδ−2

(
2− δ

3− δ
(1− s)δ−2

)
dτ

+ |P3(t)|k ∥z2 − z1∥∞
∫ 1

0

∫ s

0

Eδ−2

(
2− δ

3− δ
(1− s)δ−2

)
dτds

+ |P4(t)|k ∥z2 − z1∥∞
∫ 1

0

∫ s

0

(s− τ)δ−2Eδ−2

(
2− δ

3− δ
(1− s)δ−2

)
dτds

+
3− δ

M(δ − 2)
k ∥z2 − z1∥∞

∫ t

0

∫ s

0

dτds+
δ − 2

Γ(δ)M(δ − 2)
k ∥z2 − z1∥∞

∫ t

0

(t− s)δ−1ds

≤ 2k

M(δ − 2)Γ(δ − 2)
∥z2 − z1∥∞ +

2k

M(δ − 2)
∥z2 − z1∥∞ +

1

M(δ − 2)
k ∥z2 − z1∥∞

+
1

M(δ − 2)
k ∥z2 − z1∥∞ +

1

M(δ − 2)
k ∥z2 − z1∥∞ +

1

M(δ − 2)Γ(δ)
k ∥z2 − z1∥∞

≤ 8k

M(δ − 2)
∥z2 − z1∥∞ .
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Thus demonstrating that the operator T is a contraction mapping. The theorem’s
(3.2) implication is that T possesses a unique fixed point, which is a unique solution
to the problem (3.1).

4. Examples

In this illustration, we defend the truth of Theorem 3.2. We take into consideration

the principal ABC fractional problem for δ = 5
2 , and g(t, z(t)) = 5z(t)

exp(t)+127 :

ABCD
5
2 z(t) = 5z(t)

exp(t)+127 ,

ABCD
3
2 z(1) = 0; ABCD

1
2 z(1) = 0; z(0) = 0.

(4.1)

It is clear that g is Lipschitz mapping with constant of lipschitz equal k = 5
128 . As

for the condition (3.3), since 40
128M( 1

2 )
= 0, 434 < 1.

Thus, by the conclusion of Theorem 3.2, the boundary value problem (4.1) has a
unique solution on [0, 1].
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