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Abstract In this paper, we considered the structure and differences between
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1. Introduction

Our objective here is to exhibit genuine musicians in their subconsciousness
sense the touch and guiding of mathematical structure—notably symme-
try which shows up in composed music. Genuine musicians express their feeling of
harmonic structure in their mind in terms of music driven by their architectural
intuition of balance and unity.

In this paper we shall base our argument on the Helmholtz-Joachim scale §2
since this is in good match with just intonation and it is rarely found elsewhere
than in [8]. It can serve as a cursor of scales in transient stage from Pythagorean,
just intonation, Mercator scale to the rather mechanical equal temperament.

2. Helmholtz-Joachim scale

As have been talk about in [21], in the case of natural scales (just intonation) resp.
Pythagorean scale, musical notes appear in the form 2p3q5r (multiples of the basic
note), where p ∈ Z, q = −3,−2,−1, 0, 1, 2, 3 and r = −1, 0, 1, respectively r = 0.

H.von Helmholtz with the assist of the renowned violinist J. Joachim, made an
experiment and tabulated the notes which are the most pleasing to the ears, which
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we mentioned to as the Helmholtz-Joachim scale [21]: HJ scale. It gave a partial
description of Pythagoras’ law of small numbers.

C E♭ E F G A♭

int. unison minor 3rd major 3rd perfect 4th perfect 5th minor 6th

ratio 1
1

6
5

5
4

4
3

3
2

8
5

note do mi♭ mi fa sol la♭

Table 2.1. Helmholtz-Joachim scale

from C A C

interval major sixth octave

ratio 5
3

2
1

note la do

Table 2.1. Helmholtz-Joachim scale (cont.)

C 264 D 297 E 330 F 352 G 396 A 440 B 495 C 528

C × 9
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5
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9

32
27

4
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9
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E × 16
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6
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4
3

3
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5

F × 9
8

5
4
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3
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G × 10
9

5
4

4
3

A × 9
8

6
5

B × 16
15

Table 2.2. Frequency ratios in just intonation scale
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Figure 1. Just intonation scale

Comparing HJ scale and just intonation, we find a remarkable similarity. The
only difference is D (re) 9

8 is replaced by E♭ (mi♭) 6
5 and instead of B (si) 15

8 , A♭

(la♭) 8
5 is added.

A remarkable feature of HJ scale is that rach ratio except for the first and the
last can be calculated just as with Farey fractions. E.g. to find G (sol) 3

2 from the

neighboring F (fa) 4
3 A♭ (la♭ 85 ) we calculate the mediant

4

3
+

8

5

!
=

4 + 8

3 + 5
=

3

2
. (2.1)

Farey fractions are constructed as follows: from 0
1 ,

1
1 we have 0

1 ,
1
2 ,

1
1 from which

0
1 ,

1
3 ,

1
2 ,

2
3 ,

1
1 and so on. The Farey sequence of order 2, 3. 4 are

F2 =
{1
2
, 1
}
, F3 =

{1
3
,
1

2
,
2

3
, 1
}

F4 =
{1
4
,
1

3
,
1

2
,
2

3
,
3

4
, 1
}
. (2.2)

In general Fn is the set of all irreducible fractions with denominators ≤ n.

Since a piano or an organ admits only 12 distinct notes in one octave, we must
use the sma note for G♯ and A♭. In the HJ scale, G♯ is a major third 5

4 (cf. Definition
3.1) above E (fa, so♯), its distance from C is 5

4 · 5
4 = 25

16 . Hence the distance from

G♯ to A♭ is not 1 as should be but

8

5
÷ 25

16
=

128

125
= 1.024,

which is perceptible to trained ears.
The whole tone 3

2 ÷ 4
3 = 9

8 from F to G differs from the whole tone 10
9 from E♭

to F or from G to A ( 53 ÷
3
2 = 10

9 ) by an amount that is called a comma by Greeks:
81
80 = 1.0125. This is to be compared with (2.4).

One octave has 12 semitones. Therefore, if we pile up the notes on the basic
one, the 12th power is essential. In the case of the Pythagorean scale, what are
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piled up are powers of 3
2 , so that

(
3

2

)12

≈ 129.7, (2.3)

which is a small higher than 7 octaves: 27 = 128. The interval

129.7

128
= 1.01338 · · · (2.4)

is known as the comma of Pythagoras. This discrepancy accounts for some
difficulties in attaining an organized system of pitch.

Helmholtz also observed that a sufficiently low note, say low C, has harmonics
whose frequencies are exact multiplies of the initial note (C). Table 1.2, an ex-
tract from the tabulation, is the foundation of Coxeter’s speculation of the law of
cyclotomic numbers [8]. Cf. §8 for Fibonacci intervals.

mult. 1 2 3 4 5 6 7 8 9 10 11 12

note C C G C E G - C D E - G

Table 2.3. Multiples of low C
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3. From Pythagorean scale to just intonation

name ratio nat. temp. semi-tones

unison d
d

1
1 1.0000 0

octave 2d
d

2
1 2.0000 12

perfect 5th s
d = l

r = · · · = 2m
l = q 3

2 1.4983 7

perfect 4th f
d = s

r = · · · = 2m
t = q 4

3 1.3348 5

major 3rd m
d = l

f = t
s = q4

4
5
4 1.2599 4

minor 3rd f
r = s

m = 2d
l = 2r

t = 4
q3

6
5 1.1892 3

major 6th l
d = t

r = 2r
f = 2m

s = q3

2
5
3 1.6818 9

minor 6th m
d = l

f = t
s = 8

q4
8
5 1.5874 8

major 2nd r
d = m

r = s
f = l

s = t
l =

q2

2
9
8 1.1225 2

minor 7th r
d = m

r = s
f = l

s = t
l =

4
q2

16
9 1.7818 10

minor 2nd f
m = 2d

t = 8
q5

16
15 1.05946 1

major 7th 2m
f = 2d

t = q5

4
15
8 1.8877 11

chromatic 2m
f = 2d

t = q5

4
25
24 1.05946 1

aug. 4th t
f = q6

8
45
32 1.4142 6

dim. 5th 2f
t = 16

q6
64
45 1.4142 6

dim. 7th 64
q9

128
75 1.6818 9

Table 3.1. Full range of musical intervals

We explain part of Table 3.1 by the following

Definition 3.1. Two intervals which combine to give an octave is called an inver-
sion to each other.

After the octave, the next simplest is the perfect fifth 3 : 2 containing 7 semi-
tones whose inversion is the perfect fourth 4 : 3 containing 5 semitones. The
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major third 5 : 4 is the interval containing 4 semitones whose inversion is the
minor sixth 8 : 5 containing 8 semitones.

The sequence of three notes arranged in the order of the major third and the
minor third 6 : 5 is called a major triad. The minor third is the interval from E

to G: 3
2 ·
(
5
4

)−1
= 6

5 which contains 3 semi-tones.
The common major chord (do-mi-so-do) has the ratio 4 : 5 : 6 : 8, while the

common minor chord (do-mi♭-so-do) has the ratio 10 : 12 : 15 : 20.

There is a definition of the major triad and the minor triad seemingly different
from that in Definition 3.1

Definition 3.2. The major triad is the superimposition of the major third by
the perfect fifth on the root. The minor triad is the superimposition of the minor
third by the perfect fifth on the root.

Proposition 3.1. The major triad may be described as a sequence of 4 semi-tones
followed by 3 semi-tones, altogether 7 semi-tones, or 5

4 ×
6
5 = 3

2 , the piling up of the
major third followed by the minor third. which is the definition in Definition 3.1.

This equality may also be expressed as 3
2 × 5

4

−1
= 6

5 , i.e. after superimposition
of the major third by the perfect fifth on the root what is the interval following the
major third? It is the minor 6th.

In Corollary 3.2, it will be shown that there are exactly three major triads,

{1, q4

4 , q} = {d,m, s} = CEG, {f, l, d} = FAC, {s, t, r} = GBD. Proposition 3.1 also
determines them. Indeed, one octave may be thought of the sequence {2, 2, 1, 2, 2, 2, 1}
(of semi-tones) and then continues in the same way, so that the pattern of 4 semi-
tones followed by 3 semi-tones is possible only for 2, 2 followed by 1, 2, which are
CEG and = GBD or 2, 2 followed by 2, 1, which is = FAC.

The Pythagorean major 3rd m = 81
64 is slightly bigger than the major 3rd 5

4
of just intonation. The Pythagorean major 3rd is said to let the melody sound
beautifully, but it diminishes harmony because of the beats contained. In {d,m}
the number of beats caused by the 4 times m and 5 times of d is

d
(
4× m

d
− 5× 1

)
= d

(
4× 81

64
− 5× 1

)
=

d

16
= 0.0625d, (3.1)

which is 16.5 times/s for d = 264 Hz, say. Hence in the Pythagorean major triad

d
{
1,

m

d
,
s

d

}
= d

{
1,

q4

4
, q

}
= d

{
1,

81

64
,
3

2

}
, (3.2)

there occur beats between the root and the major 3rd. To eliminate this beat, we
decrease the major third by multiplying by the syntonic comma

1

∆
=

80

81
(3.3)

to make it m = 5
4 . This yields the just intonation, in which the major 3rd consists

of {
1,

m

d
,
s

d

}
=

{
1,

q4∆

4
, q

}
=

{
1,

5

4
,
3

2

}
=

1

4
{4, 5, 6} . (3.4)
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For this, the value in (3.1) is 0 and there is no beat between the root and the major
third.

C 264 D 297 E 330 F 352 G 396 A 440 B 495 C 528

C × 9
8

5
4

4
3

3
2

5
3

15
8 2

D × 10
9

32
27

4
3

40
27

15
9

16
9

E × 16
15

6
5

4
3

3
2

8
5

F × 9
8

5
4

45
32

3
2

G × 10
9

5
4

4
3

A × 9
8

6
5

B × 16
15

Table 3.2. Frequency ratios in just intonation scale

Theorem 3.1. The major chord in Table 3.1 is expressed as

F = {d, r,m, f, s, l, t, 2d}

= d
{
1,

q2

2
,
q4

4
,
2

q
, q,

q3

2
,
q5

4
, 2
} (3.5)

while the minor chord as

F = {l, t, d, r,m, f, s, 2l}

= l
{
1,

q2

2
,
4

q3
,
2

q
, q,

8

q4
,
4

q2
, 2
}
.

(3.6)

Corollary 3.1. In just intonation as well as in the Pythagorean scale q = 3
2 .

Corollary 3.2. There are three major triads, {1, q4

4 , q} = {d,m, s} = CEG,
{f, l, d} = FAC, {s, t, r} = GBD.

Proof. There are three major thirds q4

4 = m
d ,

l
f ,

t
s and so the piling up of minor

thirds are possible only for those notes ending with m, l, t.

4. Continued fractions

Definition 4.1. For any u ∈ R\Q, the following process is known as the contin-
ued fraction expansion.
(i) u0 = [u] ∈ Z, 0 < v0 := u− u0 < 1, u = u0 + v0

(ii) u1 −
[

1
v0

]
∈ N, 0 < v1 = 1

v0
− u1 < 1, v0 = 1

u1+v1

· · ·
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(n) un −
[

1
vn−1

]
∈ N, 0 < vn = 1

vn−1
− un < 1, un−1 = 1

un+vn
.

u = u0 +
1

u1 + v1
= u0 +

1

u1 +
1

u2+v2

= u0 +
1

u1 +
1

u2+
1

...+ 1
un+vn

, (4.1)

= [u0;u1, u2, · · · , un + vn],

say. We refer to (4.1) as the nth continued fraction expansion of u. The process
terminates for u ∈ Q.

Lemma 4.1. If we write (4.1) with vn = 0 as

γn = u0 +
1

u1 +
1

u2+
1

...+ 1
un

= [u0;u1, u2, · · · , un] =
xn

yn
, (4.2)

the nth convergent, then

xn = unxn−1 + xn−2, yn = unyn−1 + yn−2, n ≥ 3 (4.3)

and

xn+1yn − xnyn+1 = (−1)
n
, n ∈ N. (4.4)

Proof. First three values of convergents are as in the following table.

n xn yn

0 u0 1

1 u0u1 + 1 u1

2 u2(u0u1 + 1) + u0 u2u1 + 1

Table 4.1. Convergents

Proof of (4.3) is by induction. It is true for n = 3 by the table. Indeed, it is also
true for n = 2. Assume it is true for n. Then γn+1 is obtained from γn by replacing
un by un + 1

un+1
. Hence

γn+1 =

(
un + 1

un+1

)
xn−1 + xn−2(

un + 1
un+1

)
yn−1 + yn−2

=
xn+1

xn+1
. (4.5)

(4.4) follows from induction and (4.3).

Theorem 4.1. The sequence {γn} in (4.2) converges to u in (4.1).
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Proof. By the definition (4.2), replacing un by un + vn, we should recover u:

u =
(un + vn)xn−1 + xn−2

(un + vn)yn−1 + yn−2
=

y′n
x′
n

, (4.6)

say. Hence

u− γn =
x′
nyn − xny

′
n

yny′n
=

vn(xn−1yn − yn−1xn)

yny′n
=

vn(−1)
n

yny′n

by (4.4). Since 0 < vn < 1 by Definition 4.1 and a fortiori yn < y′n, we infer that

|u− γn| <
1

yny′n
<

1

y2n
. (4.7)

Since {yn} ⊂ Z is increasing and yn > 0, we have yn ≥ n. Hence the inequaity (4.7)
leads to |u− γn| < 1

n2 → 0, whence the result.

Example 4.1. The golden ratio ϕ = 1+
√
5

2 in [5] satisfies the quadratic equation

ϕ2 = ϕ+ 1 (4.8)

or

ϕ = 1 +
1

ϕ
.

Hence apparently,
ϕ = [1; 1, 1, · · · ] = [1.1̄].

(4.8) is a characteristic equation for the Fibonacci sequence {Fn} satisfying the
recurrence Fn+1 = Fn+n−1 with F0 = F1 = 1, cf. §8.

5. Mercator 53-note tempered scale

Nicholas Mercator (1620-1687) proposed a 53-note tempered scale. Coxeter [8,
p.318] speculates the reason why 53 appears on the basis of continued fractions.
This choice of the number 53 seems to be made by the following reasoning. To find
an appropriate solution to the equation

2x =
3

2
(5.1)

or 2x+1 = 3, which is equivalent to

(x+ 1) log 2 = log 3, (5.2)

or x = log 3
log 2 − 1.

To find the continued fraction expansion of log 3
log 2 , he uses the approximation of

the logarithms log 2 = 0.3010300, log 3 = 0.4771213 and finds the expansion of
1760913
3010300 which is log 3

log 2 − 1.

u0 +
1

u1+

1

u2+

1

u3+
· · · 1

un
= u0 +

1

u1 +
1

u2+
1

u3+ 1

...+ 1
un

(5.3)
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1760913

3010300
=

1

1+

1

1+

1

2+

1

2+

1

3+

1

1+

1

5+

1

2+

1

23+
· · · = 1

1 + 1
1+ 1

2+ 1

...+

(5.4)

The fourth convergent is

1

1+

1

1+

1

2+

1

2
=

1

1 + 1
1+ 1

2+ 1
2

=
7

12
. (5.5)

This is the 12-note tempered scale.
The sixth convergent is

1

1+

1

1+

1

2+

1

2+

1

3 + 1
=

31

53
. (5.6)

This is the 53-note tempered scale due to Mercator.
This use of the number 53 is implied by the Pythagorean division of the tone

and semitone into 9 parts and 4 parts, respectively. Since the diatonic scale consists
of 5 tones and 2 semitones, it follows that the octave contains

9 + 9 + 4 + 9 + 9 + 9 + 4 = 53 (5.7)

of these parts, and the perfect fifth (3 tones and 1 semitone) contains

9 + 9 + 4 + 9 = 31. (5.8)

To deal with just intonation we consider the equation

2x =

(
3

2

)p(
5

4

)q

(5.9)

in x in the form x = [x] + ε with arbitrarily small ε. This leads to a problem in
Diophantine approximation and we hope to return to this elsewhere.

6. Bach’s fifth

Remember Corollary 3.2. We consider Kellner’s tuning. In the major triad {1, q4

4 } =
{d,m, s}, {f, l, d}, {s, t, r}, we make q a little smaller than natural 5th so that the
number of beats caused by three times the root and twice the 5th note be equal to
that of the beat caused by the four times the the 3rd and the 5th times of the root,
i.e. writing such a q by qB, we have

3× 1− 2× qB = 4× q4B
4

− 5× 1

whence we are move to the quartic equation

q4B + 2qB − 8 = 0 (6.1)

called Bach’s equation. Numerically

qB = 1.4959535062432299 · · · . (6.2)



Music as mathematics of subconsciousness 29

6.1. Solution of a quartic equation

In this subsection, we give a most reachable technique of solving (6.2) than that
given in [21]. We shall obtain the (real) roots of a quartic equation

W 4 + a1W
2 + b1W + c1 = 0

eventually with a1 = 0, b1 = 2, c1 = −8. This can be reduced to a cubic equation by
using Ferrari’s method. We add 2kW 2+k2 to both sides ofW 4 = −a1W

2−b1W−c1
to deduce that

(W 2 + k)2 = (2k − a1)W
2 − b1W + k2 − c1. (6.3)

We choose the parameter k so that the right-hand side is a square of a linear
polynomial, i.e. the discriminant is equal to zero.

D = b21 − 4(2k − a1)(k
2 − c1) (6.4)

= − 8k3 + 4a1k
2 + 8c1k − 4a1c1 + b21 = 0

With Y = 2k, (6.4) amounts to

Y 3 − a1Y
2 − 4c1Y + 4a1c1 − b21 = Y 3 + pY + q = 0, (6.5)

say (in the case a1 = 0). This, being a cubic equation, can be solved by the method
of Cardano. We use a variant of the Lagrange resolvent and determine u, v (u ≤ v)
satisfying (when p = 32, q = −4)

Y 3 + pY + q = Y 3 + 32Y − 4 = Y 3 + u3 + v3 − 3uvY

= (Y + u+ v)(Y 2 + u2 + v2 − uY − vY − uv).
(6.6)

(6.6) implies 
−3uv = p

u3 + v3 = q

(6.7)

Since u3v3 = −p3

27 = 323

27 , it follows that u3, v3 are the roots of the equation

Z2 − qZ − p3

27
= 0. (6.8)

Hence

Z =
q ±

√
q2 + 4p3

27

2
= − 2± 2

√
8219

27
= −2± 34.8945501422447 (6.9)

and so

u = −

(
2 + 2

√
8219

27

) 1
3

= −3.3290532330643168
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v =

(
−2 + 2

√
8219

27

) 1
3

= 3.2041141789878327.

Since the real root must be Y = −u− v from (6.6), we have

2k = Y = −u− v =

(
2 + 2

√
8219

27

) 1
3

−

(
−2 + 2

√
8219

27

) 1
3

= 0.12493905407648409

(6.10)

2k satisfies (6.4)Then (6.3)with a1 = 0, b1 = 2 reads

(W 2 + k)2 =
√
2k

(
W − 1

2k

)2

which leads to W 2 ±
(√

2kW − 1√
2k

)
+ k = 0. Of them only

W 2 +
√
2kW − 1√

2k
+ k = 0

has real roots which are

W = −
√
2k

2
± 1

2

√
4√
2k

− 2k = 1.4959535062432299,−1.8494206957764086,

(6.11)

the positive root leading to (6.2).

7. Analogue vs. Digital music

It is often said, especially by audience which has trained musical ears, that music
played by digital devices sound rather flat and even boring compared with live
performance. There is a good reason for that. In transforming analogue signal
into digital signal, the A/D transformer being used, which makes quantization and
approximates the sampled signal at digital levels. This rounding-off of analogue
signals give them a sort of unpleasant perfection. A good example is a karaoke
estimater which would give bad marks for those professional singers who can get
the audience touched, on the ground that they don’t sing as in the scores.

7.1. HiFi vs. WiFi

In [19, pp.30-33] the principle of CD is expressed. The pitch of the sound can
be divided into 216 = 65536 parts because a CD can record 16 convex-concave
points as one information and transforms into 0 and 1 signal. The CD reads these
16 information 44100 times per second. The cause for this depends on the sup-
position that human ears can hear the sound whose frequencies are up
to 20kHz = 20000Hz. Since the sound with frequency 20000Hz oscillates 20000
times per second and so more than this times of sampling is needed. And for stereo
recording, we need twice as numerous, whence the sampling frequency 44100. Thus
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the sampling (Nyquist) rate π
T is 1/44100 and the input digital signal is re-establish

by the sampling theorem [6] etc.

Thus digital art smells of death.
We interpret this as the contrast between the pentagon (human body with arms

held horizontal) and the hexagon (snow crystal).

8. The golden ratio and Fibonacci intervals

The home key could be any one of seven notes but what survived in tone-centered
music nowadays are the Ionian scale beginning and ending on C and the Aeolian
scale (with key-note A). The Ionian and Aeolian scales are known as the ordinary
major and minor scales. Pursuing the reason why these survived of all other possible
6 modes, we encountered the speculation in [4].

begin key-note

Ionian C major

Aeolian A minor

Table 8.1. Ionian vs. Aeolian scale

Figure 2. The position of major triads

Definition 8.1. The major triad is the piling up of the major third followed by
the perfect fifth on the root. The minor triad is the piling up of the minor third
followed by the perfect fifth on the root.

In paper [4], there are two speculations for the cause why those two chords
remain. One is that the interval from si to do is tiny and gives the impression that
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it is coming to an end. The second one is more convincing that as one can see,
the major triads are situated symmetrically over the octave, and so these chords
survived. But although in the figure it is apparent, it is not certain whether one
senses this symmetry by ears. We estimate that this is not a reasoning by senses
but by causes. In paper [4], it is declared that Bach’s music is quite mathematical
but for Bach, music comes first and the accompanying mathematical structure is
rather the by-products of composing music—as mathematics of subconsciousness
or senses.

 

Figure 3. Hokusai: Mt. Fuji at the back of waves

Fibonacci intervals (counting in semitones) in Bartók’s Sonata for Two Pianos
and Percussion, 3rd mov. (1937) (Maconie 2005, 26, 28, [20])—Wikipedia.

We note that only first 4 Fibonacci numbers are used, 1, 2, 3, 5, 8 which are stated
as giving harmonics by Helmholtz, Table 1.2.
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Figure 4. Bartok: Fibonacci

8.1. Quellenangaben

References on mathematics and music: [1], [2], [3], [24], [25].
References on matheasthetics: [7], [10], [11], [12], [13], [14], [15], [27].
References on fluctuations: [9], [17], [18], [22], [26], [28].
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