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Abstract We will give a smooth meromorphic continuation from holomor-
phic automorphic forms to non-holomorphic ones by computing the inner prod-
uct of holomorphic Poincaré series with s modular form of weight k and that of
two non-holomorphic Poincaré series by their Fourier expansion. Combining
them via the Sears-Titchmarch expansion gives rise to the unfolding side of
the inner product.
By the Parseval formula with respect to the spectral expansion we deduce the
other side. Equating them gives Kuznetsov sum formula, i.e. an expression
of the spectral sum with a general weight in terms of sums of Kloostermann
sums.
Through careful analysis of the Kuznetsov sum formula we penetrate into the
core of the theory with more ease and transparency.
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1. Overview

[39, p.1] states “A rather full but somewhat longwinded function-theoretic treat-
ment of that case (the classical modular functions and modular forms) was given in
1890-1892 by R. Fricke and F. Klein; the arithmetical aspects, which are intimately
tied up with the theory of complex multiplication, were considered by H. Weber
in his Algebra, vol, III (for a modern treatment, cf. a forthcoming book by G.
Shimura). The relation between modular forms and Dirichlet series with
functional equations was discovered by Hecke, whose epoch-making work
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during the years 1930-1940,based on that discovery and that of the “Hecke opera-
tors,” brought out completely new aspects of a theory which many mathematicians
would have regarded as a closed chapter long before.”

The relation is referred to as the Riemann-Hecke-Bochner correspondence
which has been developed by Bochner, Chandrasekharan and Narasimhan, M.
Knopp, B. Berndt et al and has been culminated in [15].

The spectral theory of automorphic forms may be said to begin with the dis-
covery of Maass (wave) forms [20]. In pursuit of extending Hecke’s result on the
L-functions associated to holomorphic automorphic forms, Maass went backwards
from the Dirichlet series with Grössen-characters attached to real quadratic fields
and introduced non-holomorphic automorphic forms, eigenfunctions of the hyper-
bolic Lalacian ∆, the Maass (wave) forms.

Selberg [32] and Roelcke [29] independently developed the L2-theory of automor-
phic forms and established spectral expansions. Combined with the development of
representation theory notably by [11], the theory has been vastly advanced.

In [1, p.2], R. Baker mentions “The idea is to make a difficult subject a bit
easier for beginners.” There are a few books [5], [12], [24], [37], [38] devoted to the
subject but none of them are easy to read. In these lectures, we concentrate on
the Kuznetsov sum formula as opposed to the Kuznetsov trace formula [17] and
pave a light-hearted promenade to understanding of the subject to such an extent
that one can go on reading more advanced material and possibly come to the front
to make research. Selberg introduced [33] a very important class of series, known
as Poincaré series, which led him to introduce a new class of zeta-functions, the
Kloostermann(-Selberg) zeta-functions. Kuznetsov-Motohashi established the trace
formula by equating two expressions for the inner product of two Poincaré series,
one by the unfolding method and the other by the Parseval formula. The unfolding
method is ubiquitous starting probably from Petersson’s use [25] in computation of
the Fourier coefficients of a modular form of weight k.

2. Introduction

In pursuit of elucidation of the Kuznetsov sum formula [22], it has turned out
that the key idea due to Selberg [33] ( [32]) of expressing the inner product of
two Poincaré series in two ways has a catalytic effect in the modified argument of
Motohashi.

(Pm(·, s1), Pn(·, s̄2)) =
∫
F
Pm(z, s1)Pn(z, s̄2) dz,

where Pm(z, s) is the real analytic Poincaré series defined on [38, p.36] which is
referred to in [14]. We use (6.3) below which is a slightly generalized one than that
from [24, p.4].

The inner product of Poincaré series is computed in Motohashi [24, p.44] for
integers m,n > 0. Motohashi’s method amounts to the elimination of the

G2,0
1,3

 4π2mn
c2

∣∣∣∣∣∣∣∣
s1

0, s2 − s1, 1− s1

-term from the Neumann series part in Theorem

7.1 and expressing the Kloostermann sum zeta-function in terms of the inner prod-
uct of two Poincaré series. Then substituting the spectral result for the same arising



Automorphic L-functions 49

from the Parseval formula. thus expressing the Kloostermann zeta-function in terms
of spectra, discrete, continuous and holomorphic.

Equating the Unfolding formula and the Parseval formula, we may deduce the
Kuznetsov sum formula in an accessible way. For the proof cf. [18] and [14]. During
elucidation of the Kuznetsov sum formula, it has become clear that there are many
instances in the theory of automorphic L-functions where known results are not
mentioned but proved by another method. One typical example is the case of the
Chowla-Selberg (integral) formula [7], [34].

The holomorphic Eisenstein series is defined by

ζZ2(2s; α) =

∞∑′

m,n=−∞
|m+ nα|−2s (2.1)

where Re s = σ > 1, α = x + iy (y > 0) and the prime on the summation
sign means the omission of the term with m = n = 0. Since the summand is∣∣(m+ nx)2 + n2y2

∣∣−1
= Q(m,n), with Q(m,n) = (x2 + y2)n2 + 2xmn +m2, the

holomorphic Eisenstein series is an Epstein zeta-function associated with a
positive definite binary quadratic form defined by (2.1):

ζZ2(2s; α) = Z(s,Q), Q(m,n) = (x2 + y2)n2 + 2xmn+m2.

Zhang and Williams [40] reduce the Epstein zeta-function to a holomorphic
Eisenstein series and apply the Poisson summation formula to deduce the Chowla-
Selberg integral formula.

As can be seen from (2.1), there are some cases where the non-holomorphic
automorphic forms are constructed by just multiplying the non-holomorphic factor
ys:

E(z, s) =
ys

2ζ(2s)
ζZ2(2s; z). (2.2)

We note that the factor 1
ζ(2s) =

∑∞
n=1

µ(ℓ)
ℓ2s has the effect of restricting the sum-

mation variables to those which are relatively prime. This is one form of the relative
primality principle [19, p.75]. Indeed, multiplying (2.1) by this, we obtain

1

ζ(2s)
ζZ2(2s; z) =

∞∑′

ℓ,m,n=−∞

|ℓm+ ℓnz|−2s

=

∞∑′

m,n=−∞

∑
ℓ|(m,n)

µ(ℓ)|m+ nz|−2s

=

∞∑′

m,n=−∞
(m,n)=1

|m+ nz|−2s. (2.3)

This leads to (2.2), i.e.

E(z, s) =
1

2

∑
γ∈Γ∞\Γ

(Im γz)
s
=

ys

2ζ(2s)
ζZ2(2s; z),
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i.e. the theory of E(z, s) is that of 1
2ζ(2s)ζZ2(2s; z) multiplied by ys. It may therefore

reduce to this theory if we restrict to the full modular group. To avoid this, we
consider the case where there are more cusps than one, denoting them by German
alphabets.(cf. Theorem 7.1)

As another example we take up the Poincaré series holomorphic and non-holomorphic,
(4.5). It seems that there are some hidden facts here and our objective is to find
out such and also an object corresponding to the functional equation.

Once the functional equation is known, then all these are unified in the frame-
work of “The Fourier-Bessel expansion G1,1

1,1 ↔ G2,0
0,2” [15, Chapter 4].

name holom. non-holom.

Eisenstein ser. ζZ2(2s;α) = Z(s,Q1) E(z, s) = ys

2ζ(2s)ζZ2(2s; z)

Epstein zeta Z(s,Q) =
∑′

m,n

1
Q(m,n)s

ys

2ζ(2s)Z(s,Q1)

Poincaré ser. Uam(z), (2.7) Eam(z|ψ)

Table 1. Holomorphic, non-holomorphic Maass forms

2.1. Modular forms: a titbit

Although we mainly treat discrete subgroups of

SL(2,R) =
{
γ =

(
a b

c d

)∣∣∣∣ a, b, c, d ∈ R, ad− bc = 1

}
,

expecting future generalization, we state some results of discrete subgroups of G =
PGL(2,R). (S and G are for special and general). We may let SL(2,R) act on
C̄ = C ∪ {∞} by the linear fractional transformation (or Möbius transformation):

γz =
az + b

cz + d
γ =

(
a b

c d

)
, z ∈ H.

It can be immediately checked that the imaginary part y(γz) of γz satisfies

y(γz) = Im γ(z) =
y

|cz + d|2
=

y

|jγ(z)|2
=

y

|cz + d|2
,

so that the upper half-plane H (or the Lobačevskĭi) is stable under the action of
SL(2,R).

Remark 2.1. In what follows we often define a function involving the complex
power of y(γz), which are of course not holomorphic in z.

Let Γ denote the Fuchsian group of the first kind (a discrete subgroup of G =
PGL(2,R) with Γ\G non-compact and its fundamental domain of finite volume)
and let Mk(Γ) (M is for modular) be the linear space of all holomorphic functions
f : H → C satisfying the automorphic property

jγ(z)
−kf(γz) = f(z), γ ∈ Γ, (2.4)
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where j is the denominator:
jγ(z) = cz + d,

with a convention that c ≥ 0 and if c = 0, then d > 1. More concretely (2.4) reads

(cz + d)
−k
f

(
az + b

cz + d

)
= f(z), z ∈ H, γ ∈ Γ.

The element f of Mk(Γ) is called an automorphic form (or a modular form)
of weight k with respect to Γ, where k ≥ 0 is an even integer (or some write 2k for
k).

One motivation for considering condition (2.4) can be found in [35, p.80].
We have

d(γz)

dz
=

1

jγ(z)2

for γ =

(
a b

c d

)
and so (2.4) reads

f(γz)

f(z)
=

(
d(γz)

dz

)− k
2

or
f(γz) d(γz)

k
2 = f(z) dz

k
2 ,

i.e. the differential form f(z) dz
k
2 of degree k

2 is invarianat under Γ.
In the case of the full modular group Γ = PSL2(Z), it is generated by the

translation and the Spiegelung

Tz = z + 1, Sz = −1

z

and the translation generates the stabilizer of ∞.

Γ∞ = ⟨T ⟩ = {Tn | n ∈ Z}. (2.5)

For each cusp a we fix the element σa ∈ SL2(R) such that

σa∞ = a, σ−1
a Γaσa = Γ∞,

where Γa is the stabilizer of a (parabolic subgroup)

Γa = {γ ∈ Γ | γa = a}.

Every f ∈ Mk has the Fourier expansion

jσa
(z)−kf(σaz) =

∞∑
n=0

f̂a(n)e(nz), e(z) = e2πiz (2.6)

which converges absolutely and uniformly on compact subsets. If at every cusp a,
the constant term vanishes

f̂a(0) = 0,

then f is called a cusp form (or a Spitzenform). A cusp form is of exponential
decay at cusps, and in particular yk/2f(z) is bounded on H. Let Sk(Γ) (S is for
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Spitzenform) denote the space of all cusp forms of weight k which is equipped with
the Petersson inner product (1939)

⟨f, g⟩k =

∫
F
ykf(z)g(z) dz

which makes sense in Mk(Γ) for k > 2.

Theorem 2.1. Sk(Γ) is spanned by holomorphic Poincaré series (in contrast to
non-holomorphic ones in (4.4)):

Uam(z, k) =
∑

γ∈Γα\Γ

jσ−1
a γ(z)

−k
e(mσ−1

a γz). (2.7)

Proof. The subspace spanned by the holomorphic Poincaré series is closed and
any function orthogonal to the subspace is 0 by Petersson’s formula (3.1) below.

In the case a = ∞, (2.7) reduces to

Um(z, k) = U∞m(z, k) =
∑

γ∈Γ∞\Γ

jγ(z)
−k
e(mγ(z)).

3. Petersson trace formula→ Neumann series

The unfolding method of Rankin [28] and Selberg [31] has been extensively used in
spectral theory of automorphic functions.

As mentioned above, Petersson [25] already used unfolding method to prove the
formula for the Fourier coefficients in (2.6).

f̂a(n) =
(4πn)

k−1

(k − 2)!
⟨f, Uan(·, k)⟩k, (3.1)

and obtained

jσb
(z)−kUam(σbz, k) =

∞∑
n=1

( n
m

) k−1
2

Ûab(m,n)e(nz) (3.2)

with

Ûab(m,n) = δabδmn + 2πik
∑
c

Sab(m,n; c)

c
Jk−1

(
4π

√
mn

c

)
. (3.3)

Let {fjk}1≤j≤ϑk
be an orthonormal basis of Mk(Γ) and let

fjk(z) =

∞∑
n=1

f̂ajk(n)e(nz)

be the expansion at the cusp a. Let

Uam(z, k) =
(k − 2)!

(4πm)
k−1

∑
j

f̂ajk(m)fjk(z)
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be the expansion of Poincaré series with respect to this basis. We write this as

Uam(σbz, k) =
(k − 2)!

(4πm)
k−1

∑
j

f̂ajk(m)fjk(σbz)

=
(k − 2)!

(4πm)
k−1

∑
j

f̂ajk(m)

∞∑
n=1

f̂bjk(n)e(nz)jσb
(z)k. (3.4)

Equating (3.2) and (3.4) multiplied by jσb
(z)−k, we conclude that

(k − 2)!

(4πm)
k−1

∞∑
n=1

∑
j

f̂ajk(m)f̂bjk(n)e(nz)

= jσb
(z)−kUam(σbz, k) =

∞∑
n=1

( n
m

) k−1
2

Ûab(m,n)e(nz),

whence that

(k − 2)!

(4πm)
k−1

∑
j

f̂ajk(m)f̂bjk(n) =
( n
m

) k−1
2

Ûab(m,n)

or
(k − 2)!

(4π
√
mn)

k−1

∑
j

f̂ajk(m)f̂bjk(n) = Ûab(m,n). (3.5)

Equating (3.5) and (3.3), we deduce Petersson’s trace formula

Theorem 3.1. Let m,n be positive integers and k a positive even integer. Then∑
c

Sab(m,n; c)

c
Jk−1

(
4π

√
mn

c

)

= δabδmn
(−1)

k
2−1

2π
+

(−1)
k
2

2π

(k − 2)!

(4π
√
mn)

k−1

∑
j

f̂ajk(m)f̂bjk(n) (3.6)

The name is stated only on [24, p.51], in no other books have this terminology.
Some papers refer to the Petersson trace formula and refer to [13, Theorem 3.6,
p.54] in which there is no mention of this terminology, but stated as Petersson’s
formulas.

Let f(x) be a continuous function of bounded variation on R+ such that∫ ∞

0

|f(x)|x−1/2 dx <∞

in particular f(x) may be an infinitely many times differentiable function with
compact support. We follow [12] which gives the clearest exposition thereof.

Let f0 be the projection of f on the space spanned by odd indexed Bessel
functions {J2n+1|n ≥ 0} and is given by the Neumann series

f0(x) =

∞∑
n=0

2(2n+ 1)J2n+1(x)Nf (2n+ 1)
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and

Nf (λ) =

∫ ∞

0

Jλ(y)f(y)
dy

y

is the Neumann integral. In [37, p.36] this formula is stated with a typo of 2ir which
should be 2n+ 1.

Multiplying (3.6) by 2(2k − 1)Nf (2k − 1) and summing over k = 1, 2, · · · , we
conclude

Theorem 3.2. (Iwaniec [12, Theorem 9.6]) Let a, b be cusps of the Fuchsian group
of the first kind Γ and let m,n > 0 be integers. Then for any test function f
satisfying the condition

f(0) = 0, f (j)(x) ≪ (x+ 1)
−j−1

, j = 0, 1, 2, (3.7)

we have

− δabδmnf
∞ +

∑
c

c−1Sab(m,n; c)f
0

(
4π
√

|mn|
c

)

=

∞∑
k=1

i2kNf (2k − 1)ψ̄aj2k(m)ψbj2k(n),

where f∞ = f − f0 and ψajk(m) are the normalized Fourier coefficients

ψajk(m) =

(
π−kΓ(k)

(4m)
k−1

)1/2

f̂ajk(m).

This is the exact complement to Theorem 4.2.

Proof. Proof of (3.1) by unfolding method. We restrict to the case a = ∞. Then

⟨f, Um(·, k)⟩k =

∫
Γ\H

∞∑
m=0

f̂(n)e2πimz
∑

γ∈Γ∞\Γ

Im γz · e2πinzyk−1 dxdy.

Since
∫
Γ\H

∑
γ∈Γ∞\Γ =

∫
Γ∞\H (unfolding method) and the series in the integrand

are of exponential deacy in y, we may freely interchange the summation and inte-
gration to deduce

⟨f, Um(·, k)⟩k =

∞∑
n=0

f̂(n)

∫
Γ∞\H

e2πi(m−n)x dxys̄+k−2e2π(m+n)y dy

=

∞∑
n=0

δmn

∫ ∞

0

ys̄+k−2e2π(m+n)y dy

by first integrating
∫ 1

0
e2πi(m−n)x dx. Hence the only n = m term survives to give

f̂(m)

∫ ∞

0

ys̄+k−2e2π(m+n)y dy =
f̂(m)

4πms̄+k−1
Γ(s̄+ k − 1)

for Re s̄+ k − 1 > 0 whence in particular (3.1).
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Proof. Proof of Petersson’s results. We prove (3.2) and (3.3) by the double coset
decomposition and Poisson summation formula. Recalling

j(σb(z))
−k
Uam(σbz, k) =

∑
γ∈Γα\Γ

j(σ−1
a γσbz)

−k
e(mσ−1

a γσbz)

=
∑

γ∈Γ∞\σ−1
a Γσa

g(γz), (3.8)

where
g0(z) = j(z)e2πimz, g(γz) = g0(γz),

and where j(γz) = jγ(z).
We have [1, p.121]

γd/cT
nz =

d∗

c
− 1

c2
1

n+ x+ d
c + iy

,

where d∗ is in (6.1):

γd/c =

(
d∗ b

c d

)
∈ σ−1

a Γσb,

so that

g(γd/cT
nz) = c−k

(
n+ x+

d

c
+ iy

)−k

e2πi
d∗m

c e
2πi −mc−2

n+x+ d
c
+iy .

Hence

∞∑
n=−∞

g(γd/cT
nz) = e2πi

d∗m
c

∞∑
n=−∞

c−k
(
n+ x+

d

c
+ iy

)−k

e
2πi −mc−2

n+x+ d
c
+iy

= e2πi
d∗m

c

∞∑
n=−∞

∫ ∞

−∞
c−k
(
t+ x+

d

c
+ iy

)−k

e
2πi −mc−2

t+x+ d
c
+iy

−2πint
dt

by the Poisson summation formula. on putting t+ x+ d
c = u, the integral becomes

e2πi
dn
c e2πinxI(m,n, c, y),

where

I(m,n, c, y) =

∫ ∞

−∞
c−k(u+ iy)

−k
e2πi

−mc−2

u+iy −2πinu du. (3.9)

or
e2πi

dn
c e2πinzI1(m,n, c, y),

where

I1(m,n, c, y) =

∫ ∞

−∞
(u+ iy)

−k
e2πi

−mc−2

u+iy −2πin(u+iy) du. (3.10)

Hence the right-hand side of (6.2) becomes

δabe
2πimz +

∞∑
c=1

c−k
∞∑

n=−∞

∑
d(modc)

e2πi
d∗m+dn

c I1(m,n, c, y)e
2πinz,
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Noting that the definition (5.8) of Kloostermann sum amounts to

Sab(m,n; c) =
∑

d(modc)

e2πi
md∗+nd

c ,

(3.8) can be expressed as

j(σb(z))
−k
Uam(σbz, k) = δabe

2πimz +

∞∑
c=1

c−k
∞∑

n=−∞
Sab(m,n; c)I1(m,n, c, y)e

2πinz.

(3.11)
Recall the integral representation

Jν(z) =
1

2πi

(z
2

)ν ∫ c+i∞

c−i∞
et−

z2

4t t−ν−1 dt

for Re ν > 1 and c > 0.
Incorporating the change of variable t = −2πin(u+ iy) in (3.10), we find that

I1(m,n, c, y) = 2π(−i)k
(
c

√
n

m

)k−1
1

2πi

(z
2

)k−1
∫ 2πny+i∞

2πny−i∞
t−(k−1)−1et−

z2

4t dt,

where z = 4π
√
mn
c . Hence

I1(m,n, c, y) = 2π(−i)k
(
c

√
n

m

)k−1

Jk−1

(
4π

√
mn

c

)
. (3.12)

Substituting (3.12) in (3.11), we deduce that

j(σb(z))
−k
Uam(σbz, k) = δabe

2πimz

+ 2π(−i)k
∞∑
c=1

c−k
∞∑

n=−∞

(
c

√
n

m

)k−1

Sab(m,n; c)Jk−1

(
4π

√
mn

c

)
e2πinz.

We may put this in the form (3.2) with Ũab as in (3.3), completing the proof.

4. Kuznetsov trace formula

Definition 4.1. If a function f : H → C satisfies the condition (2.4) with k = 0,
then it is called a Γ-automorphic function (or automorphic):

f(γz) = f(z), γ ∈ Γ.

The space of all automorphic functions is denoted A(Γ\H). An f ∈ A(Γ\H) is
an automorphic form (of Maass) if it is an eigenfunction of the non-Euclidean
Laplacian:

(∆ + λ)f = 0, λ = s(1− s).

Some authors use the minus sign. If an automorphic form has of polynomial growth
at each cusp of Γ\H, it is called a Maass form.
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A Poincaré series (or incomplete theta series) at the cusp a is defined by changing
∞ in (5.5) by a:

Ea(z|f) =
∑

γ∈Γa\Γ

f(σ−1
a γz),

where f is periodic f(Tz) = f(z) and subject to suitable growth condition. We
write

E(z|f) = E∞(z|f) = Pf (z).

Corresponding to (5.4), one often considers the case

f(z) = ψ(y)e2πimz, (4.1)

where m is a non-negative integer and ψ : R+ → C satisfies the condition for some
a > 1

ψ(y) ≪ y| log y|−a (0 < y < 1).

Suppose Γ has cusps. At a cusp a any automorphic function f satisfies

f(σaT
nz) = f(σaz).

Hence it has a Fourier expansion

f(σaz) =

∞∑
n=−∞

fan(y)e
2πinx, (4.2)

where the nth coefficient is given by

fan(y) =

∫ 1

0

f(σaz)e
−2πinx dx. (4.3)

If f is smooth, (4.2) converges absolutely and uniformly on compact sets. The 0th
Fourier coefficient fσa

= fσa0 identically vanishes, then f is called a cusp form.

On [38, p.36] the real analytic Poincaré series with character is defined

Pm(z, s, χ) =
∑

γ∈Γ∞\Γ

χ̄(γ)y(γz)
s
e2πi(m−ξ)γz, z ∈ H, (4.4)

where χ is a one-dimensional unitary representation of Γ. Here ξ ∈ R is defined in
the setting of (2.1) as follows.

χ(σa
−1Γaσa) = e2πiξ.

Pm(z, s, 1) (i.e. ξ = 0) reduces to the one defined on [24, p.4]

Pm(z, s) = Pm(z, s, 1) =
∑

γ∈Γ∞\Γ

y(γz)
s
e2πimγ(z), z ∈ H.

Only on the real axis, there is an equality

y2kUm(z, k) = Pm(z, 2k), z ∈ R. (4.5)
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Now we consider the general Poincaré series with (4.1) incorporated:

Eam(z|ψ) = Eam(z|f) =
∑

γ∈Γa\Γ

ψ(Imσ−1
a γz)e2πim(σ−1

a γz) (4.6)

so that E∞m(z|·s) = Pm(z, s). We write

Ea(z|ψ) = Ea0(z|ψ) =
∑

γ∈Γa\Γ

ψ(Imσ−1
a γz)

Proposition 4.1. (i) Eam(z|ψ) is absolutely convergent on H.
(ii) ψ is of compact support, then Eam(z|ψ) is bounded on H.

Two important special cases with m = 0 are:

Ea(z, s) = Ea(z|·s) = Ea0(z|·s) =
∑

γ∈Γa\Γ

(Imσ−1
a γz)

s

–the Eisenstein series.
If f ∈ C∞(R+) is compactly supported, then Eam(z|ψ) is called an incomplete
theta series and the linear space of all incomplete theta series is denoted E(Γ\H).

choice f f = ψ · e ψ(y) = ys m = 0

a Ea(z|f) Pam(z|ψ) Eam(z, ·s) Ea(z, s)

a = ∞ E(z|s) ≊ Pf (z) Pf (g) Pm(z, s) E(z, s)

Table 3. Non-holomorphic Poincaré (Eisenstein) series

As described on [12, pp.141-147] and on [1, pp.16-18], the reverse Kuznetsov
trace formula is to be regarded as an expansion in J-Bessel functions due to Sears
and Titchmarsh [30, (4.4)] and in many literature this reversed form is referred to
as the Kuznetsov summation formula, [1], [21], [37]. From representation-theoretic
point of view, this is natural since this expresses the weighted Kloostermann sum in
terms of spectral part consisting of discrete and continuous spectra plus Neumann
series part arising from the holomorphic modular forms.

The proof of the Kuznetsov sum formula in the Neumann series part has been
done by Sears and Titchmarsh and Kuznetsov rediscovered it. Kuznetsov’s contri-
bution lies in the combination of the Neumann series part with the spectral part
which corresponds to f∞ under Sears-Titchmarsh inversion.

To state the spectral part, let

Bν(x) =
1

2 sin π
2 ν

(J−ν(x)− Jν(x))

and define the Titchmarsh integral Tf (t) by

Tf (t) =

∫ ∞

0

f(x)B2it(x)
dx

x
=

∫ ∞

0

f(x)
J−2it(x)− J2it(x)

2 sinhπt

dx

x
.
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Then define the continuous superposition of projections of f on B2it by

f∞(x) =

∫ ∞

0

Tf (t)B2it(x) tanh(πt) dt =

∫ ∞

0

Tf (t)
J−2it(x)− J2it(x)

2 cosh(πt)
dt.

Theorem 4.1. (Sears-Titchmarsh inversion) We have the Sears-Titchmarsh inver-
sion

f = f0 + f∞.

Also define the constant

f∞ =
1

2π

∫ ∞

0

Tf (t) tanh(πt) dt.

Theorem 4.2. (Iwaniec [12, Theorem 9.5]) Let a, b be cusps of the Fuchsian group
of the first kind Γ and let m,n > 0 be integers. Then for any test function f
satisfying the condition (3.7), we have

δabδmnf
∞ +

∑
c

c−1Sab(m,n; c)f
∞

(
4π
√
|mn|
c

)

=
∑
j

Tf (tj)ν̄a(m)νbj(n) +
∑
c

1

4π

∫ ∞

−∞
Tf (t)η̄ajc(m, t)ηbc(n, t) dt

It seems that the corresponding formulas in [1] are incorrect in comparison with
other refs.

Adding formulas in Theorems 4.2 and 3.2 in the light of the Sears-Titchmarsh
inversion gives the reversed Kuznetsov sum formula in contrast to Theorem 4.3.

Theorem 4.3. (Iwaniec [12, Theorem 9.5]) Let a, b be cusps of the Fuchsian group
Γ of the first kind and let m,n > 0 be integers. Then for any test function h
satisfying the condition (3.7), we have∑

c

c−1Sab(m,n; c)f

(
4π
√

|mn|
c

)

=
∑
j

Tf (tj)ν̄aj(m)νbj(n) +
∑
c

1

4π

∫ ∞

−∞
Tf (t)η̄ac(m, t)ηbc(n, t) dt

+

∞∑
k=1

i2kNf (2k − 1)ψ̄aj2k(m)ψbj2k(n).

Remark 4.1. We remark that Theorem 4.1 coincides with [24, Theorem 2.3, p.64].
Since in the latter, the Neumann series part ( [24, (2.2.6), p.51]) is replaced by [24,
(2.2.9), p.51], it has a seemingly different outlook. On [24, p.92], it is claimed that
the Neumann series expansion due to Titchmarsh and others ( [30]) is dispensed
with in his argument. One of our objectives is to show that the Sears-Titchmarsh
inversion is imbedded in the process of replacing the sum involving W -function.

5. Treatment in GL2

5.1. Unfolding method

Definition 5.1.
G = PGL2(R),
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N =

{
n =

(
1 n

0 1

)∣∣∣n ∈ R
}
, A =

{
c =

(
c 0

0 1

)∣∣∣c ∈ R×
}
, (5.1)

w = S =

(
0 − 1

1 0

)
is called the Weyl element.

B = NA is the Borel subgroup of G. The Bruhat decomposition reads

G = B ∪NwB. (5.2)

Although mainly we are concerned with subgroups of SL2(R), we state some results
for a discrete subgroup Γ of G such that Γ\G is non-compact but has finite invariant
volume. We may assume that

Γ ∩B = Γ ∩N = Γ∞,

where Γ∞ is given by (2.5). Let ψ be a non-trivial character of Z\R. Since

Γ∞ ≃ Z ⊂ R ≃ N, Γ∞\N ≃ Z\R (5.3)

we may regard ψ as a character on Γ∞\N .
Let S(N\G;ψ) denote the set of smooth functions f on G such that

f(ng) = ψ(n)f(g), n ∈ N, g ∈ G, (5.4)

where ψ is a character on N\G. For f ∈ S(N\G;ψ) we define the Poincaré series

Pf (g) =
∑

γ∈Γ∞\Γ

f(γg) (5.5)

the series being absolutely and uniformly convergent e.g. if f is a Schwarz function
as defined in the following definition.

Definition 5.2. We introduce the norm on N\G

∥g∥N = inf
n∈N

∥ng∥.

A function f ∈ S(N\G;ψ) is said to be rapidly decreasing mod N if for anyM > 0,
there exists a cM > 0 such that

|f(g)| < cM∥g∥−MN .

A function f ∈ S(N\G;ψ) is called a Schwarz function mod N if all of its right
translations are rapidly decreasing mod N . The space of all Schwarz function mod
N is denoted S(N\G;ψ).

Proposition 5.1. If f is a Schwarz function mod N , then Pf is absolutely and
uniformly convergent on compact subsets and Pf ∈ S(N\G;ψ).

Definition 5.3. For ψ ∈ S(Γ\G) smooth, we define the ψ-Whittaker function
(on G)

Wφ(g) =Wφ,ψ(g) =

∫
Γ∞\N

φ(ng)ψ−1(n) dn (5.6)

In view of (5.3), this corresponds to taking the Fourier coefficients.
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Lemma 5.1. Suppose Γ2 ⊂ Γ1 ⊂ Γ0 and let

Γ2\Γ1 = {Γ2sµ|µ ∈ M} = {sµΓ2}

and
Γ1\Γ0 = {Γ1zν |ν ∈ N} = {zνΓ1}

be a complete set of representatives of equivalence classes. Then

Γ0 = ∪ν∈NΓ1zν = ∪ν ∪µ Γ2sµzν = ∪λΓ2zλ

i.e.
Γ2\Γ1 ∪ Γ1\Γ0 = Γ2\Γ0.

We apply this to the case Γ0 = H and Γ2 = Γ∞.

Proposition 5.2. For f ∈ S(N\G;ψ), φ ∈ S(Γ\G), we have

(φ, Pf ) =

∫
N\G

f̄(g)Wφ,ψ(g) dg. (5.7)

Proof. Substituting the definition (5.4), we obtain

(φ, Pf ) =

∫
Γ\G

φ(g)Pf (g) dg =

∫
Γ\G

φ(g)
∑

γ∈Γ∞\Γ

f(γg) dg

=

∫
Γ∞\G

φ(g)f(g) dg

=

∫
N\G

∫
Γ∞\N

φ(ng)f(ng) dgdn

by Lemma 5.1. Applying (5.4), we may rewrite the double integral into a repeated
integral ∫

N\G
f̄(g) dg

∫
Γ∞\N

ψ̄(n)φ(ng) dn

whose inner integral is Wφ,ψ(g) in (5.6), whence the result follows.

5.2. Double coset decomposition

In the light of (5.3), the inner integral in (5.7) corresponds to the 0th Fourier
coefficient.

We decompose Γ according to the Bruhat decomposition (5.2) of G. Let

Γc = NwcN,

where c is from (5.1) and let

Ω(Γ) = {c ∈ R×|Γc ̸= 0}.

For each γ ∈ Γc, we have the decomposition

γ = n1(γ)wcn2(γ)
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with nj(γ) ∈ N . Since

Γ = Γ∞
⋃

c∈Ω(Γ)

Γc,

we have the double coset decomposition

Γ∞\Γ = {1}
⋃

c∈Ω(Γ)

Γ∞\Γc.

Definition 5.4. For c ∈ Ω(Γ) and non-trivial additive characters ψ1, ψ2 on Γ∞\N ,
let

SΓ(c, ψ1, ψ2) =
∑

γ∈Γ∞\Γc/Γ∞

ψ1(n1(γ))ψ2(n2(γ)). (5.8)

called the Kloostermann sum. In the above setting we may define an intertwining
operator K(c;ψ1, ψ2) : S(N\G;ψ1) → S(N\G;ψ2) given by

K(c;ψ1, ψ2)(f)(g) =

∫
N

f(wcng)ψ−1
2 (n) dn.

6. Maass forms and Poincaré series

6.1. Double coset decomposition

Lemma 6.1. Let a, b be cusps of Γ.
Then we have a disjoint union

σ−1
a Γσb = δabΩ∞

⋃
c>0

⋃
d(modc)

Γ∞γd/cΓ∞,

where c, d run over integers such that

γd/c =

(
∗ ∗
c d

)
∈ σ−1

a Γσb. (6.1)

If g : PSL(2,R) → C and ∑
γ∈Γa\Γ

g(σ−1
a γσb)

is absolutely convergent, then∑
γ∈Γa\Γ

g(σ−1
a γσb) = δabg(1) +

∑
c>0

∑
d(modc)

∑
n∈Z

g(γd/cT
n), (6.2)

where c, d are subject to condition (6.1). Or if f(z) is of sufficiently rapid decay on
H, then ∑

γ∈Γ

f(γz)

is automorphic and∑
γ∈Γa\Γ

f(σ−1
a γσbz) =

∑
γ∈Γ∞\σ−1

a Γσb

f(γz)
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= δabf(z) +
∑
c>0

∑
d(modc)

∑
n∈Z

f(γd/c(z + n))

under the same condition on c, d.

Theorem 6.1. For the general Poincaré series (4.6), we have the Fourier expan-
sion

Eam(σbz|ψ) = δabe
2πimzψ(y) +

∞∑
n=−∞

e2πinx
∞∑
c=1

Sab(m,n; c)I(m,n, c, y),

where in analogy to (3.9)

I(m,n, c, y) =

∫ ∞

−∞
ψ

(
Im

c−2

u+ iy

)
e2πi

−mc−2

u+iy −2πinu du

=

∫ ∞

−∞
ψ

(
−yc−2

u2 + y2

)
e2πi

−mc−2

u+iy −2πinu du

=

∫ ∞

−∞
ψ

(
−c−2

y(1 + ξ2)

)
e2πi

−mc−2

y(ξ+i)
−2πinyξy dξ.

We concentrate on the case

Pam(z, s) = Eam(z|ys) =
∑

γ∈Γa\Γ

(Imσ−1
a γz)

s
e2πim(σ−1

a γz), (6.3)

for which we have

Corollary 6.1. We have the Fourier expansion

Pam(σbz, s) = δaby
se2πimz +

∞∑
n=−∞

e2πinx
∞∑
c=1

Sab(m,n; c)I(m,n, c, y), (6.4)

where in analogy to (3.9)

I(m,n, c, y) =

∫ ∞

−∞
(−1)sc−2s(1 + ξ2)

−s
e2πi

−mc−2

y(ξ+i)
−2πinyξ y−s+1dξ. (6.5)

6.2. Unfolding method

By a similar reasoning to the proof of Proposition 5.2, we have

Theorem 6.2. Let f be automorphic, Lebesgue measurable over Γ\H and ψ is a
measurable function on the positive reals. Then

⟨f,Ean(·|ψ)⟩ =
∫ ∞

0

∫ 1

0

f(σaw)ψ̄(Imw)e−2πiw̄n dµ(w) (6.6)

which often reduces to

⟨f,Ean(·|ψ)⟩ =
∫ ∞

0

fa(y)ψ̄(y)e
−2πinz̄ dy

y2
, (6.7)

where fa(y) = fa0(y) is the 0th coefficient (4.3).



64 P. Agarwal, S. Kanemitsu and T. Kuzumaki

Proof.

⟨f,Ean(·|ψ)⟩ =
∑

γ∈Γa\Γ

∫
Γ\H

f(z)ψ̄(Imσ−1
a z)e−2πinImσ−1

a z dµ(z).

Make the change of variable w = σ−1
a γz and use the invariance of µ to deduce that

⟨f,Ean(·|ψ)⟩ =
∑

γ∈Γa\Γ

∫
σ−1
a γ(Γ\H)

f(γ−1σaw)ψ̄(Imw)e−2πinw̄ dµ(w)

=
∑

γ∈Γa\Γ

∫
σ−1
a γ(Γ\H)

f(σaw)ψ̄(Imw)e−2πinw̄ dµ(w).

by automorphy of f . Now as γ runs over Γa\Γ, σ−1
a γ(Γ\H) covers the strip Γ∞\H,

whence

⟨f,Ean(·|ψ)⟩ =
∫ ∞

0

∫ 1

0

f(σaw)ψ̄(Imw)e−2πiw̄n dµ(w),

whence (6.6) follows.
Specifying Ean(·|ψ) to Pbn(·, s2) in (6.3), (6.6) reads

⟨f, Pbn(·, s2)⟩ =
∫ ∞

0

∫ 1

0

f(σbw)y
s2e−2πinz̄ dxdy

y2
. (6.8)

Below we apply (6.8) with f(σbz) = Pam(σbz, s) in (6.4):

Pam(σbz, s) = δaby
se2πimz +

∞∑
l=−∞

e2πilx
∞∑
c=1

Sab(m, l; c)I(m, l, c, y), (6.9)

where

I(m, l, c, y) =

∫ ∞

−∞
(−1)sc−2s(1 + ξ2)

−s
e2πi

−mc−2

y(ξ+i)
−2πilyξ y−s+1dξ.

Substituting the equalities in Corollary 6.1, we note that the first term in (6.9)
contributes

δabδmn

∫ ∞

0

e−2π(m+n)yys1+s2−1 dy

y

which gives the first term in (6.10) below. The second term in (6.9) contributes the
second term in (6.10). Thus we have the following

Lemma 6.2. For cusps a, b we have

⟨Pam(·, s1), Pbn(·, s2)⟩ = δabδmnΓ(s1 + s2 − 1)(4πm)
1−s1−s2 (6.10)

+

∫ ∞

0

ys2−s1−1
∞∑
c=1

c−2s1Sab(m,n; c)J(m,n, c, y) dy,

where

J(m,n, c, y) =

∫ ∞

−∞
(1 + ξ2)

−s1
e2π

−mc−2

y(1−iξ)
−2πinyξ dξ. (6.11)
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7. Proof of Kuznetsov sum formula

7.1. Neumann series part

From Lemma we may follow the argument of Motohashi [24, pp.45-47] to prove

Theorem 7.1. For c > 0, Re s2 + c > Re s1 > c+ 1
4 we have

⟨Pam(·, s1), Pbn(·, s2)⟩ = δabδmnΓ(s1 + s2 − 1)(4πm)
1−s1−s2 (7.1)

+ 22(1−s2)πs1−s2+1ns1−s2Γ(s1 + s2 − 1)

×
∞∑
c=1

c−2s1Sab(m,n; c)G
2,0
1,3

4π2mn

c2

∣∣∣∣∣∣∣∣
s1

0, s2 − s1, 1− s1


where

G2,0
1,3

z
∣∣∣∣∣∣∣∣

s1

0, s2 − s1, s3

 =
1

2πi

∫
c

Γ(w)Γ(w + s2 − s1)

Γ(w + s2)Γ(1− s3 − w)
z−s dw. (7.2)

Lemma 7.1.

Γ(s)

Γ(1− s)
G2,0

1,3

z
∣∣∣∣∣∣∣∣

1

0, s− 1, 0

 (7.3)

= zs−1 − 1√
z

∞∑
k=1

(2k − 1)
Γ(k − 1 + s)

Γ(k + 1− s)
J2k−1

(
2
√
z
)

(Motohashi [24, (2.4.3), p.63]) and

Γ(s)

Γ(1− s)
G2,0

1,3

z
∣∣∣∣∣∣∣∣

0

0, 0,−1

 =
1√
z
J1
(
2
√
z
)
.

G2,0
1,2

z
∣∣∣∣∣∣∣∣
0

b, c

 = z
1
2 (b+c−1)e−

1
2 zWk,m(z),

where k = 1
2 (1 + b+ c),m = 1

2 (b− c).

W0,µ(z) =
1√
π

√
zKµ

(
1

2
z

)
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which is [9, p.265]. Hence

G2,0
1,2

z
∣∣∣∣∣∣∣∣

0

η − 1
2 ,−η −

1
2

 =
1√
π
z−

1
2 e−

1
2 zKη

(
1

2
z

)
. (7.4)

Another formula used is

G2,0
0,2

z
∣∣∣∣∣∣∣∣
−

a, b

 =
1

2πi

∫
(c)

Γ(a+ s)Γ(b+ s)z−s ds = 2 z
1
2 (a+b)Ka−b

(
2
√
z
)
. (7.5)

This is applied in the special case

G2,0
0,2

z
∣∣∣∣∣∣∣∣

−

− 1
2 + ir,− 1

2 − ir

 = 2 z−
1
2K2ir

(
2
√
z
)
.

For the proof of Theorem 4.3 we need two more well-known formulas

Kν(z) =
π

2 sin(πν)
(I−ν(z)− Iν(z))

and

Iν(z) = e−
πiν
2 Jν(iz), −π

2
< arg z <

π

2
(7.6)

We shall prove Theorem 4.3 by modifying Motohashi’s argument [24, pp.44-67]
and under the assumption that f is a Mellin transform of f∗:

f∗(s) =

∫ ∞

0

f(x)
(x
2

)−2s

dx

or

f(x) =
1

2πi

∫
(α)

f∗(x)
(x
2

)2s−1

ds. (7.7)

We use the special case of Theorem 7.1 with s1 = 1, s2 = s in conjunction with
(7.3) in the following winding manner. We apply the Mellin inversion formula (7.7)
to

⟨Pam(·, 1), Pbn(·, s)⟩ = δabδmnΓ(s)(4πm)
−s

+ π(4πn)
1−s

∞∑
c=1

c−2Sab(m,n; c)Γ(s)G
2,0
1,3

4π2mn

c2

∣∣∣∣∣∣∣∣
1

0, s− 1, 0

 . (7.8)
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Multiplying (7.3) with z = 4π2mn
c2 by c−2Sab(m,n; c)

1
Γ(1−s) and summing over

c = 1, 2, · · · , we obtain

∞∑
c=1

c−2Sab(m,n; c)G
2,0
1,3

4π2mn

c2

∣∣∣∣∣∣∣∣
1

0, s− 1, 0

 Γ(s)

Γ(1− s)
(7.9)

= (2π
√
mn)

2s−2
∞∑
c=1

c−2sSab(m,n; c)

− 1

2π
√
mn

∞∑
c=1

c−1Sab(m,n; c)

∞∑
k=1

(2k − 1)
Γ(k − 1 + s)

Γ(k + 1− s)
J2k−1

(
4π

√
mn

c

)
.

Then we substitute (7.8) to replace the right-hand side of (7.9) by

1

π
(4πn)

s−1 1

Γ(1− s)
⟨Pam(·, 1), Pbn(·, s)⟩ − δabδmn

1

4π2n

( n
m

)s Γ(s)

Γ(1− s)

to deduce that

2
√
mn(4πn)

s−1 1

Γ(1− s)
⟨Pam(·, 1), Pbn(·, s)⟩ − δabδmn

1

2π

( n
m

)s−1/2 Γ(s)

Γ(1− s)

= (2π
√
mn)

2s−1
∞∑
c=1

c−2sSab(m,n; c) (7.10)

−
∞∑
c=1

c−1Sab(m,n; c)

∞∑
k=1

(2k − 1)
Γ(k − 1 + s)

Γ(k + 1− s)
J2k−1

(
4π

√
mn

c

)
.

7.2. Spectral side

Then we replace the inner product part by the spectral expression in Lemma 7.2.
To state it we prepare standard notation.

Let a be a cusp of Γ. Let {uj(z) : j ≥ 0} be a complete orthonormal system of
Maass forms and let {Ec(z, s) : s =

1
2 + it, t ∈ R} be the eigen packet of Eisenstein

series in L(Γ\H) ( [12, p.117]) and

uj(σaz) = ρaj(0)y
1−sj +

∑
n ̸=0

ρaj(n)W0,sj (nz) (7.11)

= ρaj(0)y
1−sj + 2

√
y
∑
n ̸=0

ρaj(n)Ksj−1/2(2πny)e(nx),

Ec(σaz, s) = δacy
s + φac(s)y

1−s +
∑
n ̸=0

φac(n, s)Ws(nz) (7.12)

= δacy
s + φac(s)y

1−s + 2
√
y
∑
n ̸=0

φac(n, s)Ks−1/2(2π|n|y)e(nx)
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are their Fourier expansions with Fourier coefficients ρaj(n) and φac(n, s), where

φac(n, s) = πs|n|s−1 1

Γ(s)

∑
c∈Cac

c−2sSac(0, n; c).

Hence, in particular,

φ∞∞(n, s) =
πs

Γ(s)ζ(2s)
|n|−1/2

∑
ab=|n|

(a
b

)s−1/2

=
πs

Γ(s)ζ(2s)
|n|s−1σ1−2s(|n|)

where σ indicates the sum-of-divisors function, [12, (3.25), p.67].
On [12, p.118], the normalization is introduced, which we will use in this paper:

νaj(n) =

(
4π|n|

coshπtj

)1/2

ρaj(n), ηac(n, t) =

(
4π|n|
coshπt

)1/2

φac(n, 1/2 + it) (7.13)

for n ̸= 0 and eigenvalues sj = itj .

Lemma 7.2. (Parseval formula), [24, Lemma 2.2] Let {uj} be as in (7.11). Then
for Re sj >

3
4 , j = 1, 2 we have

⟨Pam(·, s1), Pbn(·, s2)⟩ =
π

Γ(s1)Γ(s2)
(4π

√
mn)

1−s1−s2
( n
m

) 1
2 (s1−s2)

×
[ ∞∑
j=1

ρaj(m)ρaj(n)Θ(s1, s2; sj)

+
1

4π

∑
c

∫ ∞

−∞
φ̄ac

(
m,

1

2
+ it

)
φbc

(
n,

1

2
+ it

)
Θ(s1, s2; t)dt

]
(7.14)

where

Θ(s1, s2; r) (7.15)

= Γ

(
s1 −

1

2
+ ir

)
Γ

(
s1 −

1

2
− ir

)
Γ

(
s2 −

1

2
+ ir

)
Γ

(
s2 −

1

2
− ir

)
.

In particular

⟨Pam(·, 1), Pan(·, s)⟩ =
π

Γ(s)
(4π

√
mn)

−1−s
( n
m

) 1
2 (1−s)

×
[ ∞∑
j=1

νaj(m)νaj(n)Γ

(
s− 1

2
+ isj

)
Γ

(
s− 1

2
− isj

)

+
1

4π

∑
c

∫ ∞

−∞
η̄ac(m, r)ηbc(n, r)Γ

(
s− 1

2
+ it

)
Γ

(
s− 1

2
− it

)
dr

]
(7.16)

Proof. The Parseval formula reads

⟨Pam(·, s1), Pbn(·, s2)⟩ =
∞∑
j=0

⟨Pam(·, s1), uj⟩⟨Pbn(·, s2), uj⟩

+
1

4π

∑
c

∫ ∞

−∞

〈
Pam(·, s1), Ec

(
·, 1
2
+ it

)〉〈
Pbn(·, s2), Ec

(
·, 1
2
+ it

)〉
dt.
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Specifying Ean(·|ψ) to Pam(·, s) in (6.3), (6.7) reads

⟨Pam(·, s), f⟩ =
∫ ∞

0

fa(y)y
s−2e−2πny dy, (7.17)

In the case uj , we use (7.11) to compute the integral uai(y) to be δmn, so that
(7.17) amounts to

⟨Pam(·, s), uj⟩ = ρaj(m)

∫ ∞

0

ys−
3
2 e−2πmyKsj−1/2(2πmy) dy

= (2πm)
1
2−sρaj(m)

∫ ∞

0

ys−
3
2 e−yKitj (y) dy

=
√
π(4πm)

1
2−sρaj(m)

Γ
(
s− 1

2 + itj
)
Γ
(
s− 1

2 − itj
)

Γ(s)

by the Mellin transform of (7.4):∫ ∞

0

ys−
3
2 e−yKη(y) dy =

√
2π2−s

Γ
(
s+ η − 1

2

)
Γ
(
s− η − 1

2

)
Γ(s)

.

〈
Pam(·, s), Ec

(
·, 1
2
+ it

)〉
=

∫ ∞

0

Ec(y)y
s−2e−2πny dy (7.18)

In this case we use (7.12) and the integral Eci(y) to be δmn, so that (7.18) amounts
to 〈

Pam(·, s), Ec

(
·, 1
2
+ it

)〉
= φac

(
m,

1

2
+ it

)∫ ∞

0

ys−
3
2 e−2πmyK−it(2πmy) dy

=
√
π(4πm)

1
2−sφac

(
m,

1

2
+ it

)
Γ
(
s− 1

2 + it
)
Γ
(
s− 1

2 − it
)

Γ (s)
.

(7.16) follows in view of

Θ(1, s; r) =
πΓ
(
s− 1

2 + ir
)
Γ
(
s− 1

2 − ir
)

coshπr
.

7.3. Mellin invesion

(4π)
−2

(mn)
−1 sinπs

π

[ ∞∑
j=1

νaj(m)νaj(n)Γ

(
s− 1

2
+ isj

)
Γ

(
s− 1

2
− isj

)

+
1

4π

∑
c

∫ ∞

−∞
η̄ac(m, r)ηbc(n, r)Γ

(
s− 1

2
+ it

)
Γ

(
s− 1

2
− it

)
dr

]
− δabδmn

1

4π2n

( n
m

)s Γ(s)

Γ(1− s)
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= (2π
√
mn)

2s−2
∞∑
c=1

c−2sSab(m,n; c) (7.19)

− 1

2π
√
mn

∞∑
c=1

c−1Sab(m,n; c)

∞∑
k=1

(2k − 1)
Γ(k − 1 + s)

Γ(k + 1− s)
J2k−1

(
4π

√
mn

c

)
.

To prove Theorem 4.3, we apply (7.7), i.e. multiplying (7.19) by f∗(x)
(
x
2

)2s−1

and integrate along σ = α.
Thereby we interchange the order of integration and appeal to the known for-

mulas for G-functions (7.5), (7.13), and (7.6) successively for the integrals of the
form ∫

(α)

Γ

(
s− 1

2
+ ir

)
Γ

(
s− 1

2
− ir

)
z−s dr

and we appeal to (7.5) for integrals of the form∫
(α)

Γ(k − 1 + s)

Γ(k + 1− s)
z−s dr.

This winding manner occurs because we avoid the use of Sears-Titchmarsh in-
version and indeed, the f∞ part in Theorem 4.2 does not appear explicitly and
embedded in the replacement process.

tool Double coset, Poisson Inn. prod. unfolding appl.

holom. Fourier exp. Petersson ◦

non-hol. Fourier exp. Kuznetsov ◦

Table 3. Relation between holomorphic and non-holomorphic trace formula
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