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Abstract In this paper, we investigate the solvability of time conformable
fractional equation set in a singular cylindrical domain in RN+1. Some reg-
ularity results are obtained for the classical solutions by using the Dunford
operational calculus
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1. Introduction and motivation

First, let Π be the cylindrical defined by

Π = [0, 1]× Ω (t) ,

where Ω (t) is the singular domain given by

Ω (t) =

{
(x1, x2, .., xN ) ∈ RN :

√
x2
1 + ....+ x2

N ≤ φ (t)

}
.

Here φ is the functions of parametrization satisfying

φ (0) = 0,

and

φ (t) > 0, t ∈ ]0, 1] .

In the cylindrical domain Π, we consider the following linear conformable fractional
differential equation

Dα
t u (t, x) +

N∑
j=1

D2m
xi

u (t, x) = h (t, x) , α ∈ (0, 1], m ∈ N∗, (1.1)

†the corresponding author. Email address: chaouchicukm@gmail.com(B.
Chaouchi)

1Department of Mathematics, Faculty of Science and Technology, University
of Khemis Miliana, Khemis Miliana, Algeria

2National Higher School of Mathematics, Algiers, Algeria.
3Faculty of Technical Sciences, University of Novi Sad Trg Obradovića 6, 21125
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where x = (x1, x2, .., xN ) denotes a generic point of RN and Dα
t is the standard

conformable time fractional derivative of order α in the sense stated in [1] and [10].
Recall here that for a given function f the conformable time fractional derivative
of order αis defined by

Dα
t f (t) = lim

ε→0

f
(
t+ εt1−α

)
− f (t)

ε
,

For more information, we refer the reader to [3], [11], [12]. Furthermore, the rela-
tionship with the classic derivative is given by the following useful relation

Dα
t f = t1−αDtf. (1.2)

The conformable fractional derivatives can be viewed in some sense as an extension
of the classical one and it is important to note here that this type of derivatives
satisfies all concepts of ordinary calculus such as: product, quotient and chain rules,
Rolle theorem and mean value theorem. Furthermore, the fractional conformable
derivatives are used to better understand some physical and engineering systems.
To be more precise, using the conformable derivatives calculus, an alternative rep-
resentation of the diffusion equation is given to improve the modeling of anomalous
diffusion and also to develop the Swartzendruber model for description of non-
Darcian flow in porous media [13]. Before finishing, we just note that this work is
motivated by the fact that there is a few results devoted to the study of conformable
fractional boundary problems set on non smooth domains. The method of investi-
gation, is inspired from [4], [5], [9] in where some concrete evolution problems were
treated using an abstract point of view. This abstract approach is based essentially
on the use of the well known Dunford’s operational calculus combined with the
techniques used in [2], [6], [7] and [8]. In this work, the right hand side f of (1.1) is
a taken in

Cθ ([0, 1] ;C (Ω)) , 0 < θ < 1,

denoting the space of the bounded and θ-Hölder continuous functions endowed with
the norm

∥u∥Cθ([0,1];C(Ω)) = max
(t,x)∈Π

|f (x)|+ sup
(t′,x′ )̸=(t,x)

∥f(x′)− f(x)∥C(Ω)

∥t′ − t, x′ − x∥θ
.

We suppose also that (1.1) is associated with the following initial and boundary
conditions

u|{0}×Ω = 0, u|{1}×Ω = 0, (1.3)

u|[0,1]×∂Ω = 0, (1.4)

where D (1, φ (1)) is the disk of radius φ (1) centered at (1, 0) . Our strategy is based
on the approximation of the singular domain Π by a sequences of domains given by

Πn = [tn, 1]× Ω (t) ,

where (tn)n∈N is a decreasing sequence of real numbers such

lim
n→+∞

tn = 0.

Putting
un = u|Πn

.
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Consequently, the solution u of Problem (1.1) will be approached by the solutions
un of

Dα
t un (t, x)−

N∑
j=1

∂2m
xi

un (t, x) = f (t, x) , (t, x) ∈ Πn, (1.5)

subject to
u|{tn}×Ω = 0, u|{1}×Ω = 0, (1.6)

u|[tn,1]×∂Ω = 0. (1.7)

2. Results for approached problem (1.5)–(1.6)-(1.7)

We start with he abstract setting of the approached problem (1.5)-(1.7). For this
reason, we consider the following change of variables

T : Πn → Qn,

(t, x1, x2, x3) 7→ (t, ξ1, .., ξN ) =

(
t,

x1

φ (t)
, ...,

xN

φ (t)

)
,

(2.1)

where
Qn = [tn, 1]×D,

here

D := D (0, 1) =

{
ξ = (ξ1, .., ξN ) ∈ RN :

√
ξ21 + ...+ ξ2N ≤ 1

}
. (2.2)

Now, we introduce the following change of functions

un (t, x1, .., xN ) = vn (t, ξ1, .., ξN ) ,

and

h (t, x1, .., xN ) = g (t, ξ1, .., ξN ) .

(2.3)

In the sequel, to make the notation less cluttered, we denote also by ξ = (ξ1, .., ξN )
a generic point of RN . Keeping in mind properties (1.2), the new version of (1.5) is
given by

t1−αDtvn (t, ξ)−
1

φ2m (t)

N∑
j=1

D2m
ξi vn (t, ξ)−

φ′ (t)

φ (t)

n∑
j=1

ξjDξjvn (t, ξ) = f (t, ξ) (2.4)

or

Dtvn (t, ξ)− L
(
t, ξ,Dξj

)
vn (t, ξ) = f (t, ξ) , tn ≤ t ≤ 1,

with

L
(
t, ξ,Dξj

)
= Ψ(t)

N∑
j=1

D2m
ξi +Φ(t)

n∑
j=1

ξjDξj . (2.5)
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Here 

Ψ(t) =
1

φ2m (t)
tα−1,

Φ (t) =
φ′ (t)

φ (t)
tα−1,

(2.6)

and
f = tα−1g.

Next, we give the following results describing the effect of the inverse change of
variables.

Lemma 2.1. Let 0 < θ < 1. Then

1. h ∈ Cθ ([0, 1] ;C (Ω)) ⇒ g ∈ Cθ ([0, 1] ;C (D))

2. g ∈ Cθ ([0, 1] ;C (D)) ⇒ h ∈ Cθ
φ ([0, 1] ;C (Ω)) where

Cθ
φ ([0, 1] ;C (Ω)) =

{
h ∈ Cθ ([0, 1] ;C (Ω)) : (φ)

θ
h ∈ Cθ ([0, 1] ;C (Ω))

}
.

Proof. See Proposition 3.1 in [5].
We have also the following results concerning the smoothness of coefficients of

our elliptic operator L given by (2.5).

Lemma 2.2. Let Ψ(.) and Φ (.) be the real valued functions given by (2.6). Then,

1. Ψ(.) and Φ (.) are in C1([tn, 1]),

2. Ψ(.) and Φ (.) are in Cθ([tn, 1]), 0 < θ < 1.

To establish the abstract version of our problem, we consider the following
vector-valued functions:

vn : [tn, 1] → E; t −→ vn(t); vn(t)(ξ) = vn (t, ξ) ,

f : [tn, 1] → E; t −→ f(t); f(t)(ξ) = f (t, ξ) ,

where E = C(Ω) and the abstract version of it is given by

v′n (t) +A (t) vn (t) = f (t) , t ≥ tn, (2.7)

under
vn (tn) = 0, vn(1) = 0 (2.8)

and (A (t))tn≤t≤T is a family of closed linear operators with domainsD(A(t)) (which
are not dense) defined by

D (A (t)) :=
{
w ∈ W 2m,p

0 (Ω) ∩ C(Ω), p > 2,m ∈ N∗ : L
(
t, ξ,Dξj

)
w ∈ C(Ω)

}
,

(A (t))w (ξ) := L
(
t, ξ,Dξj

)
w (ξ) .

(2.9)
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Without loss of generality, consider the following natural change of function

w(t) = vn(t+ tn) and g(t) = f(t+ tn);

Then, we are concerned with following problem

w′ (t) +A (t)w (t) = g (t) , t ∈ [0.1] , (2.10)

under
w (0) = 0, w (1) = 0 (2.11)

The spectral properties of the family of operators (2.9) are summarized in the
following proposition

Proposition 2.1. 1. A (t) is a family of a closed non densely defined operator
satisfying the Krein-ellipticity property, that is:

ρ(A (t)) ⊃ Σω,υ0
= {λ ∈ C\ {ω} / υ0 ⩽ |arg(λ− ω)| ⩽ 2π − υ0} (2.12)

(here ρ (A (t)) is the resolvent set of A (t)) and

sup
λ∈Σω,υ0

∥∥(λ− ω) (A (t)− λI)−1
∥∥
L(E)

< +∞, (2.13)

for some given ω ∈ R and υ0 ∈ ]0, π/2[ .

2. There exists C > 0 such that

∀λ ⩾ 0,∀t ≥ 0
∥∥(A (t)− λI)−1

∥∥
L(E)

⩽
C

1 + λ
. (2.14)

3. The operator-valued function t 7→ (A(t)−λI)−1 defined on [0, 1] is in C1([0, 1] ;L(E))
we suppose that there exists C > 0 such that

∀λ ⩾ 0,∀t ≥ 0

∥∥∥∥ ∂

∂t
(A (t)− λI)−1

∥∥∥∥
L(E)

⩽
C

1 + λ
, (2.15)

and there exists K > 0 such that for all t > τ ≥ 0 :∥∥∥∥ ∂

∂t
(A (t)− λI)

−1 − ∂

∂τ
(A (τ)− λI)

−1

∥∥∥∥
L(E)

≤ K |t− τ |θ

1 + λ
. (2.16)

Proof. See Proposition 7.10 and Proposition 7.11 in [2].
Our purpose is to establish some results for Problem (2.7). Recall here that a

strict solution is a function wn such that function v such that for every t ≥ tn

w ∈ C1([0, 1] , E) ∩ C([0, 1[ , D(A (t))),

furthermore v satisfies conditions (2.8).
The techniques used here are essentially based on the Dunford functional calculus
and the methods applied in [2]. We know that if An(t) is a constant operator
satisfying (2.14), the representation of the solution wn is given by the formula

w (t) = − 1

2iπ

∫
Γ

t∫
0

e−λ(t−s− 1
2 )

sinh λ
2

(A− λI)
−1

g(s)ds dλ
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− 1

2iπ

∫
Γ

1∫
t

e−λ(t−s+ 1
2 )

sinh λ
2

(A− λI)
−1

g(s)ds dλ.

Here Γ is the boundary of Σω,υ0
oriented from ∞e+iυ0 to ∞e−iυ0 . Keeping in mind

the constant case, we look for a solution of Problem (2.10)-(2.11) in the following
form :

w (t) = − 1

2iπ

∫
Γ

t∫
0

e−λ(t−s− 1
2 )

sinh λ
2

(A (t)− λI)
−1

g∗(s)ds dλ

− 1

2iπ

∫
Γ

1∫
t

e−λ(t−s+ 1
2 )

sinh λ
2

(A (t)− λI)
−1

g∗(s)ds dλ,

where g∗ is an unknown function to be determined in some adequate space in
order to obtain a strict solution w. The following results describe some interesting
properties of the vector valued function w.

Proposition 2.2. Suppose that g∗ ∈ Cθ([0, 1] , E), 0 < θ < 1. Then, under As-
sumptions (2.14)-(2.15)-(2.16), we have for all t ∈ [0, 1] :

w(.) ∈ C([0, 1] ;D(A (.)).

Proof. It suffices to show that the integral

I = − 1

2iπ

∫
Γ

t∫
0

e−λ(t−s− 1
2 )

sinh λ
2

A (t) (A (t)− λI)
−1

g∗(s)ds dλ

− 1

2iπ

∫
Γ

1∫
t

e−λ(t−s+ 1
2 )

sinh λ
2

A (t) (A (t)− λI)
−1

g∗(s)ds dλ, (2.17)

= I1 + I2,

converges. The two integrals are treated in the same way. Then, we focus on the
first one . We write

g∗(s) = g∗(s)− g∗(t) + g∗(t),

this implies that

I1 = ∆1 +∆2,

with

∆1 = − 1

2iπ

∫
Γ

t∫
0

e−λ(t−s− 1
2 )

sinh λ
2

A (t) (A (t)− λI)
−1

(g∗(s)− g∗(t)) ds dλ,

and

∆2 = − 1

2iπ

∫
Γ

t∫
0

e−λ(t−s− 1
2 )

sinh λ
2

A (t) (A (t)− λI)
−1

g∗(t)ds dλ.
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Then,

∥∆1∥E ≤ 1

2π

∫
Γ

1∣∣sinh λ
2

∣∣
 t∫

0

e−Reλ(t−s− 1
2 )
∥∥∥A (t) (A (t)− λI)

−1
∥∥∥
L(E)

(s− t)θds

 |dλ|

≤ C

∫
Γ

 t∫
0

∣∣∣∣∣e−Reλ
2 e−Reλ(t−s+ 1

2 )

(1− eReλ)

∣∣∣∣∣ (s− t)θds

 |dλ|

≤ C

∫
Γ


1∫

0

∣∣∣∣∣∣∣∣∣
e−Reλ

2 e−Reλ(t−s+ 1
2 )(

1− e
− π

2 tan(π
2

− θ0
2 )
)2

∣∣∣∣∣∣∣∣∣ (s− t)θds

 |dλ|

≤ C(
1− e

− π

2 tan(π
2

− υ0
2 )
)2

∫
Γ

 1∫
0

e−Reλe−Reλ(t−s) (s− t)θds

 |dλ|

≤ C

Reλ
.

For the second quantity, one has

∥∆2∥E

≤ 1

2π

∫
Γ

t∫
0

∣∣∣∣∣e−λ(t−s− 1
2 )

sinh λ
2

∣∣∣∣∣ ∥∥∥A (t) (A (t)− λI)
−1
∥∥∥
L(E)

∥g∗(t)∥E ds dλ

≤ C(
1− e

− π

2 tan(π
2

− θ0
2 )
)2

∫
Γ

 1∫
0

e−Reλ
2 e−Reλ(t−s+ 1

2 ) ds

 |dλ|

≤ C

Reλ
.

Proposition 2.3. Suppose that g∗ ∈ Cθ([0, 1] , E), θ ∈]0, 1[. Then, under Assump-
tions (2.14), we have :

w(.) ∈ C1([0, 1] ;E).

Proof. Let 0 ≤ τ < t ≤ 1. We have

w(t)− w(τ) = Π1 +Π2 +Π3,

where

Π1 = − 1

2iπ

∫
Γ

t∫
τ

e−λ(t−s− 1
2 )

sinh λ
2

(A (t)− λI)
−1

g∗(s)ds dλ

+
1

2iπ

∫
Γ

t∫
τ

e−λ(τ−s+ 1
2 )

sinh λ
2

(A (τ)− λI)
−1

g∗(s)ds dλ
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Π2 = − 1

2iπ

∫
Γ

1∫
t

e−λ(t−s+ 1
2 )

sinh λ
2

(A (t)− λI)
−1

g∗(s)ds dλ

+
1

2iπ

∫
Γ

1
t

e−λ(τ−s+ 1
2 )

sinh λ
2

(A (τ)− λI)
−1

g∗(s)ds dλ

and

Π3 = +
1

2iπ

∫
Γ

τ∫
0

e−λ(τ−s− 1
2 )

sinh λ
2

(A (τ)− λI)
−1

g∗(s)ds dλ

− 1

2iπ

∫
Γ

τ∫
0

e−λ(t−s− 1
2 )

sinh λ
2

(A (t)− λI)
−1

g∗(s)ds dλ,

The proof is very technical and the calculus are very cumbersome, we just treat the
quantity Π1. We write

Π1 = − 1

2iπ

∫
Γ

t∫
τ

e−λ(t−s− 1
2 )

sinh λ
2

(A (t)− λI)
−1

g∗(s)ds dλ

+
1

2iπ

∫
Γ

t∫
τ

e−λ(τ−s− 1
2 )

sinh λ
2

(A (t)− λI)
−1

g∗(s)ds dλ

− 1

2iπ

∫
Γ

t∫
τ

e−λ(τ−s− 1
2 )

sinh λ
2

(A (t)− λI)
−1

g∗(s)ds dλ

+
1

2iπ

∫
Γ

t∫
τ

e−λ(τ−s+ 1
2 )

sinh λ
2

(A (τ)− λI)
−1

g∗(s)ds dλ,

then,

Π1 = − 1

2iπ

∫
Γ

t∫
τ

(
e−λ(t−s− 1

2 )

sinh λ
2

− e−λ(τ−s− 1
2 )

sinh λ
2

)
(A (t)− λI)

−1
g∗(s)ds dλ

− 1

2iπ

∫
Γ

t∫
τ

e−λ(τ−s− 1
2 )

sinh λ
2

(
(A (t)− λI)

−1 − (A (τ)− λI)
−1
)
g∗(s)ds dλ,

then

Π1 = − 1

2iπ

∫
Γ

1

sinh λ
2

 t∫
τ

(
e−λ(t−s− 1

2 ) − e−λ(τ−s− 1
2 )
)

(A (t)− λI)
−1

g∗(s)ds

 dλ

− 1

2iπ

∫
Γ

1

sinh λ
2

 t∫
τ

e−λ(τ−s− 1
2 )
(
(A (t)− λI)

−1 − (A (τ)− λI)
−1
)
g∗(s)d

 s dλ
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= Π11 +Π12.

Taking into account the estimate (2.14), a direct computation show that

∥Π11∥E ≤ C |t− τ |

For Π12, since the operator-valued function t 7→ (A(t) − λI)−1 defined on [0, 1[ is
in C1([0, 1] ;L(E)), it follows then that

∥Π12∥E ≤ C |t− τ | .

Following the same reasoning and techniques, we obtain

Proposition 2.4. Suppose that g∗ ∈ Cθ([0, 1] , E), θ ∈]0, 1[. Then, under Assump-
tions (2.14)-(2.15)-(2.16), we have for all t ≥ 0 :

w′(.) ∈ C1([0, 1] ;E).

Proposition 2.5. Suppose that g∗ ∈ Cθ([0, 1] , E), θ ∈]0, 1[. Then, under Assump-
tions (2.14)-(2.15)-(2.16), the function w defined by (2.17) satisfying the following
equation given by

w′ (t) = −A (t)w (t) + g∗(t)−Rλ(g
∗)(t),

where

Rλ(g
∗)(t) =

1

2iπ

∫
Γ

t∫
0

e−λ(t−s− 1
2 )

sinh λ
2

∂

∂t
(A (t)− λI)

−1
g∗(s)ds dλ

+
1

2iπ

∫
Γ

1∫
t

e−λ(t−s+ 1
2 )

sinh λ
2

∂

∂t
(A (t)− λI)

−1
g∗(s)ds dλ.

Proof. Using the same argument as in [5], set

wε (t) = − 1

2iπ

∫
Γ

t−ε∫
0

e−λ(t−s− 1
2 )

sinh λ
2

(A (t)− λI)
−1

g∗(s)ds dλ

− 1

2iπ

∫
Γ

1∫
t+ε

e−λ(t−s+ 1
2 )

sinh λ
2

(A (t)− λI)
−1

g∗(s)ds dλ

Then, a direct computation show that

w′
ε (t) =

1

2iπ

∫
Γ

t−ε∫
0

λ
e−λ(t−s− 1

2 )

sinh λ
2

(A (t)− λI)
−1

g∗(s)ds dλ

− 1

2iπ

∫
Γ

t−ε∫
0

e−λ(t−s− 1
2 )

sinh λ
2

∂

∂t
(A (t)− λI)

−1
g∗(s)ds dλ
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− 1

2iπ

∫
Γ

e−λ(t−t+ε− 1
2 )

sinh λ
2

(A (t)− λI)
−1

g∗(t− ε)dλ

+
1

2iπ

∫
Γ

1∫
t+ε

λ
e−λ(t−s+ 1

2 )

sinh λ
2

(A (t)− λI)
−1

g∗(s)ds dλ

− 1

2iπ

∫
Γ

1∫
t+ε

e−λ(t−s+ 1
2 )

sinh λ
2

∂

∂t
(A (t)− λI)

−1
g∗(s)ds dλ

+
1

2iπ

∫
Γ

e−λ(t−t−ε+ 1
2 )

sinh λ
2

(A (t)− λI)
−1

g∗(t− ε)dλ

Now, the use of the following algebraic identity

(A (t)− λI)
−1

=
A (t) (A (t)− λI)

−1 − I

λ
,

allows us to write w′
ε (t) as follows

w′
ε (t) = Qε,1 (t) +Qε,2 (t) +Qε,3 (t) +Qε,4 (t) ,

where

Qε,1 (t) =
1

2iπ

∫
Γ

t−ε∫
0

e−λ(t−s− 1
2 )

sinh λ
2

A (t) (A (t)− λI)
−1

g∗(s)ds dλ

+
1

2iπ

∫
Γ

1∫
t+ε

e−λ(t−s+ 1
2 )

sinh λ
2

A (t) (A (t)− λI)
−1

g∗(s)ds dλ

Qε,2 (t) = +
1

2iπ

∫
Γ

e−λ( 1
2−ε)

λ sinh λ
2

A (t) (A (t)− λI)
−1

g∗(t− ε)dλ

− 1

2iπ

∫
Γ

e−λ(ε− 1
2 )

λ sinh λ
2

A (t) (A (t)− λI)
−1

g∗(t− ε)dλ

Qε,3 (t) = − 1

2iπ

∫
Γ

t−ε∫
0

e−λ(t−s− 1
2 )

sinh λ
2

∂

∂t
(A (t)− λI)

−1
g∗(s)ds dλ

− 1

2iπ

∫
Γ

1∫
t+ε

e−λ(t−s+ 1
2 )

sinh λ
2

∂

∂t
(A (t)− λI)

−1
g∗(s)ds dλ

and

Qε,4 (t) =
1

2iπ

∫
Γ

e−λ(ε− 1
2 )

λ sinh λ
2

g∗(t− ε)dλ− 1

2iπ

∫
Γ

e−λ( 1
2−ε)

λ sinh λ
2

g∗(t− ε)dλ
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Lebesgue’s and Cauchy’s theorems give us

lim
ε→0

Qε,1 (t) = − 1

2iπ

∫
Γ

A (t)

 t∫
0

e−λ(t−s− 1
2 )

sinh λ
2

+

1∫
t

e−λ(t−s+ 1
2 )

sinh λ
2

 (A (t)− λI)
−1

g∗(s)ds dλ

= −A (t)w(t),

and

lim
ε→0

Qε,2 (t) = +
1

2iπ

∫
Γ

e−
λ
2 −

λ sinh λ
2

A (t) (A (t)− λI)
−1

g∗(t)dλ

− 1

2iπ

∫
Γ

e+
λ
2

λ sinh λ
2

A (t) (A (t)− λI)
−1

g∗(t)dλ

= A (t) (A (t))
−1

g∗(t)

= g∗(t).

and

lim
ε→0

Qε,3 (t) = − 1

2iπ

∫
Γ

t∫
0

e−λ(t−s− 1
2 )

sinh λ
2

∂

∂t
(A (t)− λI)

−1
g∗(s)ds dλ

− 1

2iπ

∫
Γ

1∫
t

e−λ(t−s+ 1
2 )

sinh λ
2

∂

∂t
(A (t)− λI)

−1
g∗(s)ds dλ

and

lim
ε→0

Qε,4 (t) =
1

2iπ

∫
Γ

e−λ(ε− 1
2 )

λ sinh λ
2

g∗(t− ε)dλ− 1

2iπ

∫
Γ

e−λ( 1
2−ε)

λ sinh λ
2

g∗(t− ε)dλ = 0.

Summing up, we conclude that

w′ (t) = lim
ε→0

w′
ε (t) = −A(t)w(t) + g∗(t) +Rλ(g

∗)(t),

where

Rλ(g
∗)(t) = − 1

2iπ

∫
Γ

t∫
0

e−λ(t−s− 1
2 )

sinh λ
2

∂

∂t
(A (t)− λI)

−1
g∗(s)ds dλ

− 1

2iπ

∫
Γ

1∫
t

e−λ(t−s+ 1
2 )

sinh λ
2

∂

∂t
(A (t)− λI)

−1
g∗(s)ds dλ.

The natural question that arises, what is the relation between the vectorial
functions g∗ and g, the answer is given by the following theorem

Proposition 2.6. Suppose that g ∈ L∞ ([0, 1] ;E). Then, there exists ω∗ ∈ R∗

such that for all λ ∈ ρ (A (.)) with |λ| > |ω∗| , the equation

g(.) = g∗(.)−Rλ(g
∗)(.),

admits a unique solution g∗ ∈ L∞ ([0, 1] ;E) .
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Proof. The result is handled by proving that

g∗(.) = (1−Rλ)
−1

g(.),

To do this, it suffices to show that

∥Rλ∥ < 1.

Using Assumption (2.15), it is easy to deduce that

∥Rλ∥L(L∞([0,1];E)) = O

(
1

Reλ

)
,

Now, choosing a suitable sufficiently large ω∗, we conclude that for any |λ| > |ω∗|

∥Rλ∥L(L∞([0,1];E)) < 1.

As a direct consequence of Assumption (2.16), we obtain the following result
describing the regularity of the operator Rλ

Proposition 2.7. Suppose that g∗ ∈ Cθ([0, 1] , E), θ ∈]0, 1[. Then, under Assump-
tions (2.16), one has

Rλ(g
∗)(.) ∈ Cθ([0, 1] , E).

Keeping in mind the key estimates (2.14)-(2.15) and (2.16), we are able to justify
our main results for our translated abstract Problem (2.10)-(2.11)

Theorem 2.1. Suppose that g∗ ∈ Cθ([0, 1] , E), θ ∈]0, 1[. Then, there exists ω∗ ∈
R∗ such that for all λ ∈ ρ (A (t)) with |λ| > |ω∗| , the the function

w (t) = − 1

2iπ

∫
Γ

t∫
0

e−λ(t−s− 1
2 )

sinh λ
2

(A (t)− λI)
−1

g∗(s)ds dλ

− 1

2iπ

∫
Γ

1∫
t

e−λ(t−s+ 1
2 )

sinh λ
2

(A (t)− λI)
−1

g∗(s)ds dλ

is the unique strict solution of Problem Problem (2.10)-(2.11) satisfying

w (t) , A(t)w(t) ∈ Cθ([0, 1] , E).

Remark 2.1. Using the estimates (2.16), We easily deduce the existence of C > 0
such that

max
t∈[0,1]

|w (t) ≤ C| . (2.18)

At this level, we can conclude that our Problem (2.7)-(2.8) has a unique strict
solution of is given by

vn(t) = w(t− tn).

Furthermore, thanks to (2.18), we can extract a convergent subsequence

vnj (t) = w
(
t− tnj

)
where (

tnj

)
→ 0.

Then, after a passage to the limit, we deduce the following important result
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Theorem 2.2. Suppose that f ∈ Cθ([0, 1] , E), θ ∈]0, 1[. Then, Problem Problem

v′n (t) +A (t) vn (t) = f (t) , t ∈ [0, 1] , (2.19)

vn (0) = 0, vn(1) = 0 (2.20)

has a unique strict solution satisfying

v (t) , A(t)v(t) ∈ Cθ([0, 1] , E).

Since Problem (2.19)-(2.20) can be viewed as the abstract version of our original
problem (1.1)-(1.3)-(1.4). Then, our main result for this problem is as follows

Theorem 2.3. Let h ∈ Cθ([0, 1];C(Ω)), 0 < θ < 1. Then, Problem (1.1)-(1.3)-
(1.4) has a unique strict solution u ∈ C2(Π). Moreover, u satisfies the following
maximal regularity propriety

Dα
t u (t, x) ∈ Cθ

φ ([0, 1] ;C (Ω)) ,

and

N∑
j=1

D2m
xi

u (t, x) ∈ Cθ
φ ([0, 1] ;C (Ω)) .
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